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Abstract
Superconducting-circuit based platforms are strong contenders in the race to build a quantum

computer. While the transmon has had extraordinary success as the leading superconducting qubit

modality, there are reasons to believe that other types of qubits could possess relative benefits in

terms of noise immunity, anharmonicity, or extensibility. In this thesis we explore multiple such next-

generation superconducting circuits, focusing specifically on the current mirror and the fluxonium.

Kitaev in 2006 proposed the current-mirror circuit, a type of superconducting qubit that should be

protected from all types of local noise and could thus possess enhanced coherence times. We

explore the spectrum and coherence properties of this device, while also developing numerical

methods useful for studying other types of large superconducting circuits. Meanwhile, the highly-

anharmonic fluxonium qubit has been shown experimentally to have coherence times competitive

with or better than state-of-the-art transmons. Motivated by these results we explore a galvanic-

coupling scheme for fluxonium qubits and utilize a framework going beyond typical rotating-wave

approximation treatments to perform high-fidelity gates.
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1 Introduction
The field of quantum information and computation has grown in leaps and bounds since its incep-

tion in the 1980s and 1990s. Benioff in 1980 first considered the interaction between quantum

mechanics and computation [1]. This was followed by Feynman in 1981 who famously proposed

using a quantum computer to efficiently simulate nature, precisely because nature itself is quantum

mechanical [2]. Interest exploded in 1994 when Peter Shor published his eponymous algorithm for

factoring integers in polynomial time on a hypothetical quantum computer [3, 4]. The fastest-known

classical factoring algorithm takes super-polynomial time [5]. As such the believed hardness of the

problem of factorization is the basis of the widely used RSA cryptosystem [6]. If successfully imple-

mented on a quantum computer of sufficient size, Shor’s algorithm breaks RSA. There now exist a

number of quantum algorithms that provide speedup over known classical counterparts, including

Grover’s search algorithm [7] and algorithms for simulating chemical reactions [8]. An exhaustive

list can be found in the “Quantum Algorithm Zoo” [9].

Researchers are actively investigating a multitude of physical platforms to serve as the building

blocks of a quantum computer, including trapped ions [10], neutral atoms [11], nitrogen-vacancy

centers in diamond [12], and superconducting circuits [13, 14]. In this dissertation we will focus only

on superconducting circuits. This platform holds great promise for realizing a quantum computer,

owing in part to the large coupling strengths that are achievable [15] (leading to fast gate times), in-

situ tunability [14] and existing advanced fabrication and lithography techniques [16]. A downside

of strong coupling is that the interaction with the environment is correspondingly strong. As such,

superconducting qubits generally suffer from relatively short coherence times as compared to,

e.g., trapped ion qubits [10, 13]. However, as we will discuss below, researchers have made

extraordinary progress in recent years in improving the coherence times of superconducting qubits.
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(a) (c)(b)

Figure 1.1: Degradation of gate fidelities under decoherence and imperfect control. An X/2 gate
maps the state |0⟩ or |1⟩ to 1√

2
(|0⟩ + |1⟩) or 1√

2
(|0⟩ − |1⟩), respectively (green trajectories). (a) An

imperfect implementation of the X/2 gate with a small amount of rotation along the Y axis (blue
trajectories). (b-c) Implementations of the X/2 gate without any unwanted Y rotation but in the
presence of (b) depolarization and (c) pure dephasing (blue trajectories). In all three cases, gate
fidelities are less than unity.

Especially in the current noisy intermediate-scale quantum (NISQ) era [17], improving coher-

ence times and gate fidelities is critical for increasing the circuit depth, i.e., the number of con-

secutive quantum gates in a computation [18]. Looking further afield, quantum algorithms require

implementation on a quantum computer that is fault tolerant [4, 19]. That is to say, the decoherence

rates and gate infidelities associated with the physical qubits must be below certain thresholds in

order for errors to be correctable. The thresholds vary based on the error-correction scheme: the

surface code [20] has a relatively low threshold of just 1% for the per-operation error rate, while the

2D Bacon-Shor code with nearest-neighbor connectivity has a more stringent threshold of 2 · 10−5

[21]. In the surface code, the number of physical qubits necessary to implement a single logical

qubit varies with the error rate [20]. Thus the price paid for such a generous error threshold is that

implementation with physical qubits with error rates only just below the threshold requires > 105

physical qubits per logical qubit [20]. Suppressing this number below 103 − 104 physical qubits

necessitates two-qubit gate fidelities in excess of 0.999.

Progress towards higher two-qubit gate fidelities [22, 23, 24] can be made by focusing on the

two main factors contributing to errors: decoherence and imperfect control. Decoherence occurs
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due to both depolarization and pure dephasing. Depolarization refers to unwanted transitions such

as relaxation and excitation, while pure dephasing occurs due to variations in the energy difference

between the qubit states. Imperfect control could refer to parasitic terms in the Hamiltonian (such

as the ubiquitous static ZZ interaction [25, 26, 27, 28]), or to unwanted operators activated by the

experimenter while executing a gate. The effects of depolarization, pure dephasing and imperfect

control can be visualized by utilizing the Bloch sphere representation of qubit operations [Fig. 1.1].

The north and south pole correspond to the qubit states |0⟩ and |1⟩, respectively, and operations

on the qubit are rotations on the Bloch sphere. One very useful aspect of this representation is the

ability to include and visualize the detrimental effects of decoherence. Consider as an example the

implementation of an X/2 gate. If the gate was executed perfectly and decoherence was absent,

then the state |0⟩ or |1⟩would be mapped to the state 1√
2
(|0⟩+|1⟩) or 1√

2
(|0⟩−|1⟩), respectively. The

gate fidelity is lowered if the X/2 gate is accompanied by an additional unwanted rotation about the

Y axis, see Fig. 1.1(a). If instead the experimenter has perfect knowledge of the Hamiltonian but the

qubit is subject to depolarization or pure dephasing, gate fidelities also suffer, see Fig. 1.1(b)-(c).

In order to obtain the highest-possible gate fidelities, it is thus necessary to achieve the longest-

possible coherence times while simultaneously maintaining exquisite understanding of and control

over the system Hamiltonian. In this thesis, we explore both avenues of optimization.

1.1 Optimizing coherence

To envision how to continue improving the coherence of superconducting qubits, it is useful to give

a partial historical account of the development of the fluxonium qubit [29, 30]. Recent experiments

on this qubit modality have demonstrated coherence times ranging from hundreds of microseconds

[31, 32] to milliseconds [33]. These results represent an improvement of nearly six orders of mag-

nitude relative to the first experiments on Cooper-pair boxes (CPB) [34]. The invention of the CPB

in 1998 by Devoret and collaborators established the quantum coherence of a single Cooper pair

[35]. In 1999 Nakamura and collaborators demonstrated coherent control over the quantum state

of the CPB [34]. Coherence times for the CPB were of the order of a single nanosecond or shorter
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[34], limited by low-frequency charge noise [36]. To combat this noise the quantronium was intro-

duced in 2002 by Devoret and collaborators [37]. This device is a generalization of the CPB and

allows for the offset charge to be biased at a so-called “sweet spot.” At this point the quantronium is

first-order insensitive to charge noise and thus enjoyed an orders-of-magnitude jump in coherence

times relative to the CPB, with relaxation and dephasing times T1, T2 on the order of microseconds

and hundreds of nanoseconds, respectively [37]. To suppress the detrimental effects of charge

noise even further, in 2007 Schoelkopf, Girvin, Devoret and coworkers introduced the transmon,

which essentially is a capacitively shunted CPB [38]. This modification exponentially suppresses

the charge sensitivity of the qubit transition frequency. State-of-the-art transmons have coherence

times in the hundreds of microseconds range [39, 40]. Nevertheless, there are drawbacks to the

transmon: it has a reduced anharmonicity relative to the CPB or quantronium and higher-lying

levels remain charge sensitive. The fluxonium, introduced by Devoret, Glazman and collabora-

tors in 2009 [29, 30, 41] addresses these issues via the introduction of a shunt inductor. This

addition eliminates sensitivity to a dc charge offset [29] and allows for flux tunability, which can be

used to control the spectrum of the fluxonium. By biasing the device at the half-flux sweet spot,

the fluxonium can have an order-of-magnitude larger anharmonicity than the transmon [32] while

remaining first-order insensitive to flux noise. As mentioned above, state-of-the-art fluxonium de-

vices [33] have achieved coherence times greater than the best published results for transmons

[39, 40].

This history demonstrates the power of hardware-level protection from noise. In particular it

motivates the systematic design of qubits that are protected from all types of local noise. In 1997

Kitaev addressed this question in his seminal paper on quantum computing with anyons [42] and

introduced the toric code on a lattice, a system with a ground-state degeneracy that is exponen-

tially protected against local perturbations. Inspired by Kitaev’s work, Ioffe, Feigel’man, Douçot

and coworkers in 2002 proposed arrays of rhombus qubits that implement the crucial features of

Kitaev’s proposal: an exponentially protected ground-state degeneracy along with vanishing ma-

trix elements of local operators between different logical states [43, 44, 45, 46, 47]. Each rhombus

is four sided, with a Josephson junctions on each side [48, 49]. If biased appropriately, the circuit
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exhibits an effective cos(2ϕ) potential, where the lowest-energy wave functions localized in the

minima at ϕ = 0 and at ϕ = π form the qubit states. Gershenson, Ioffe and coworkers have ex-

perimentally realized chains of rhombi [50, 51]. Kitaev in 2006 proposed the current-mirror circuit

[52], which is similarly a cos(2ϕ) qubit but qualitatively different from the rhombus-based circuits.

In 2013 Brooks, Kitaev and Preskill modified the current-mirror design and introduced the 0 − π

circuit. This device was experimentally realized in an unprotected parameter regime by Houck

and coworkers in 2019 [53]. Today there is continuous progress on protected circuits and while

there has not yet been an experimental demonstration of a fully-protected superconducting cir-

cuit, researchers are actively working towards this goal. In this thesis we will focus in detail on

characterizing the spectrum, coherence properties and origin of protection of the current-mirror

circuit.

1.2 Optimizing control

To execute a quantum gate, the experimenter typically implements an external drive. This is mod-

eled as a time-dependent addition to the bare Hamiltonian (which describes the system when the

drives are turned off), either causing transitions or introducing relative phases. In superconduct-

ing circuits, these drives are typically voltage or current pulses at resonant frequencies [14, 15,

54]. Most often, the analysis of the time evolution in the presence of these drives makes use of the

rotating-wave approximation (RWA) [14], simplifying the analysis by rendering the Hamiltonian time

independent. However, the RWA is only valid for drive strengths that are sufficiently weak com-

pared with the frequencies of relevant transitions. Strong drives are useful for speeding up gate

times, and fast gates are necessary for qubits with limited coherence times. For low-frequency

qubits [31, 55, 56], drive strengths yielding high-fidelity gates can approach or even exceed qubit

frequencies. In such cases, the validity of the RWA is called into question or made totally inappli-

cable.

Many researchers have explored beyond-the-RWA physics, most famously Bloch and Siegert

[57] who in 1940 derived the leading-order shift of the resonance frequency due to strong drive
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effects. In 1973 Cohen-Tannoudji and collaborators provided a fully quantum-mechanical calcula-

tion of the Bloch-Siegert shift [58]. In an influential 1965 analysis, Shirley derived similar results

by utilizing Floquet theory, replacing the time-dependent and finite-dimensional Hamiltonian with a

time-independent and infinite-dimensional Hamiltonian [59]. Many authors have since utilized Flo-

quet theory [60, 61, 62, 63, 64] for both perturbative and nonperturbative analyses of phenomena

due to intense fields.

A different technique that provides an exponential solution for the propagator and can also

include beyond-the-RWA effects is the expansion due to Magnus [65, 66, 67, 68]. The Magnus

expansion has proved widely useful in numerous fields of physics and mathematics, see Ref. [67]

and references therein for an extensive review. In recent years, the Magnus expansion has been

utilized for optimizing the shape of pulse envelopes [68], analyzing the effects of frequency chirps

[69], correcting for leakage errors [70] and accelerating adiabatic gates [71]. In this thesis we

utilize the Magnus expansion to predict and correct for strong-drive effects for high-fidelity gates

on fluxonium qubits.

1.3 Structure of the thesis

This thesis is loosely structured into two main sections. The first section includes the next three

chapters, which outline the main ideas that motivate and underlie this thesis. The second sec-

tion includes the following three chapters which build on the foundation of the previous three and

describe our main results.

In Ch. 2 we discuss in detail the modeling of how noise sources couple to qubits and thus

motivate the study of hardware-level protection. We introduce the fluxonium and current-mirror

circuits, which are the main focus of this thesis. To aid in the numerical diagonalization of the

protected current-mirror circuit, in Ch. 3 we introduce the theory of tight binding and discuss its

application to superconducting circuits. Considering the optimization of control, in Ch. 4 we derive

the Magnus expansion and demonstrate its application in cases where the RWA fails. Continuing

on now to the main results of this thesis, in Ch. 5 we introduce an effective model for the current-
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mirror circuit and obtain quantitative predictions for the spectrum and coherence of the device. In

Ch. 6 we apply the tight-binding method to the current-mirror circuit and obtain numerical results

that are beyond those obtainable with more standard exact-diagonalization techniques. In Ch. 7

we shift our attention to the optimization of gate fidelities in high-coherence qubits and discuss

a coupling scheme and control protocol for low-frequency fluxonium qubits. We summarize our

results and provide an outlook in Ch. 8.
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2 Decoherence
Superconducting circuits inevitably experience decoherence due to uncontrollable coupling to the

environment. This coupling generally results in both depolarization and pure dephasing.

Depolarization is a catch-all term to describe unwanted transitions mediated by the environ-

ment. In high-frequency qubits where }ω ≫ kBT , depolarization is typically dominated by relax-

ation processes |1⟩ → |0⟩. Here ω denotes the qubit frequency and T the temperature of the

environment. In lower-frequency qubits where }ω ≲ kBT , excitation processes |0⟩ → |1⟩ also be-

come important due to the presence of thermal photons at the qubit frequency. For the protected

qubits discussed in this thesis, transitions between the qubit states are generally suppressed for

reasons that will become clear later. The dominant depolarization processes in this case are tran-

sitions upwards |0⟩, |1⟩ → |n⟩, n > 1. Adding up the rates of all relevant transitions yields the

depolarization rate Γ1, and taking the inverse yields the depolarization time T1 = 1/Γ1.

Pure dephasing is the dissipation-free loss of relative-phase information. It is a purely quantum

phenomenon, arising from the ability of the environment to distinguish between two quantum states.

The detrimental effects of pure dephasing can be understood by considering a Ramsey experiment

[72]. The experimentalist initializes the superposition state |ψ⟩ = 1√
2
(|0⟩+|1⟩), and pure-dephasing

processes force this state into a classical mixed state limt→∞ |ψ(t)⟩⟨ψ(t)| = 1
2(|0⟩⟨0|+ |1⟩⟨1|). The

pure-dephasing time Tϕ = 1/Γϕ is thus the timescale associated with the decay of the off-diagonal

component c0c∗1 of the density matrix

|ψ(t)⟩⟨ψ(t)| =

|c0|2 c0c
∗
1

c∗0c1 |c1|2

 , (2.1)
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where c0, c1 are the time-dependent coefficients in the decomposition |ψ(t)⟩ = c0|0⟩+ c1|1⟩. Depo-

larization processes also generally cause dephasing, combining with pure dephasing to give the

overall dephasing rate [73, 74, 75]

Γ2 =
Γ1

2
+ Γϕ. (2.2)

The dephasing time is then defined as T2 = 1/Γ2.

2.1 Noise modeling

We follow the standard formalism for modeling the coupling of a qubit to the environment: in this

analysis we treat the noise classically and assume the Hamiltonian depends on a noisy parameter

λ(t) = λ0 + δλ(t) (for instance, the offset charge in a CPB or transmon qubit) [38, 75, 76, 77, 78,

79, 80]. Taylor expanding the Hamiltonian about λ = λ0 up to second order yields

H ≈ H0 +
∂H0

∂λ
δλ(t) +

1

2

∂2H0

∂λ2
δλ2(t), (2.3)

where the derivatives are evaluated at λ = λ0. The noise is characterized by its spectral den-

sity S(ω) =
∫∞
−∞ eiωtdt⟨δλ(t)δλ(0)⟩, which is the Fourier transform of the auto-correlation function

⟨δλ(t)δλ(0)⟩. Here we assume that the noise is Gaussian with zero mean, and that it has a short

auto-correlation time compared with the timescale of a typical experiment. In addition we assume

that the noise-spectral density is well behaved as ω → 0 (we relax this assumption in Ch. 5 for the

important case of 1/f noise sources).

To evaluate the effects of the perturbing operator V (t) [the two rightmost terms in Eq. (2.3)],

we expand it in the basis of the eigenstates |n⟩ of H0

V (t) =
∑
n

vnn(t)|n⟩⟨n|+
∑
n,m
n ̸=m

vnm(t)|n⟩⟨m|. (2.4)

The diagonal terms generally cause pure dephasing while the off-diagonal terms induce depolar-
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ization. The diagonal coefficients are given by

vnn(t) = ⟨n|∂λH0|n⟩δλ(t) +
1

2
⟨n|∂2λH0|n⟩δλ(t)2 = ∂λEnδλ(t) +

1

2
⟨n|∂2λH0|n⟩δλ2(t), (2.5)

where the second equality is obtained straightforwardly by differentiating the eigenvalue equation

H0(λ)|n(λ)⟩ = En(λ)|n(λ)⟩with respect to λ and operating from the left by the bra ⟨n(λ)|, where we

have made the dependence on λ explicit. For pure dephasing we distinguish between operating

at or away from a sweet spot, where ∂λEn = 0 and the linear contributions of the noise vanish.

At this bias point second-order effects of the noise become important for pure dephasing. The

off-diagonal coefficients are approximated by

vnm(t) = vnmδλ(t), vnm = ⟨n|∂λH0|m⟩, n ̸= m, (2.6)

neglecting the second-order contributions which are subdominant when considering depolarization

[75].

Assuming that the noise can be treated perturbatively, it is convenient to transform into the

interaction picture defined by the unitary U0(t) = exp(−iH0t/}). The interaction-frame Hamiltonian

is

HI = U †
0HU0 − i}U †

0 U̇ =
∑
n

vnn(t)|n⟩⟨n|+
∑
n,m
n ̸=m

vnm(t)|n⟩⟨m|eiωnmt, (2.7)

where ωnm = (En − Em)/}. Expanding the state at time t as |ψ(t)⟩ =
∑

n cn(t)|n⟩, the equations

of motion for the coefficients cn(t) are

i}ċn(t) =
∑
m

vnm(t)eiωnmtcm(t). (2.8)

In the following we obtain solutions to Eq. (2.8) by making suitable approximations. We first discuss

depolarization before returning to pure dephasing.
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2.1.1 Depolarization

The probability of a transition from |i⟩ → |n⟩ from first-order time-dependent perturbation theory is

[81]

Pni(t) =

∣∣∣∣∣− i

}

∫ t

0
dt′vnie

iωnit
′
δλ(t′)

∣∣∣∣∣
2

=
1

}2
|vni|2

∫ t

0
dt′
∫ t

0
dt′′eiωnit

′′
e−iωnit

′
δλ(t′′)δλ(t′), (2.9)

In a typical T1 measurement, one averages over many experiments and thus noise realizations.

Taking an ensemble average yields

⟨Pni⟩(t) =
1

}2
|vni|2

∫ t

0
dt′
∫ t

0
dt′′eiωni(t

′′−t′)⟨δλ(t′′ − t′)δλ(0)⟩, (2.10)

where we have utilized the time translation symmetry of the noise. Introducing τ = t′′ − t′ yields

⟨Pni⟩(t) =
1

}2
|vni|2

∫ t

0
dt′
∫ t−t′

−t′
dτeiωniτ ⟨δλ(τ)δλ(0)⟩. (2.11)

Under the assumption of a short autocorrelation time of the noise, the inner integral is dominated

by the values of τ near zero. It is thus a good approximation to take the limits of integration to ±∞

[80]. We recognize the inner integral as S(ωni) and the outer integral immediately yields a factor

of t

⟨Pni⟩(t) =
1

}2
|vni|2S(ωni)t, (2.12)

valid only for sufficiently small values of t where we can apply first-order perturbation theory. Di-

viding by t then yields the rate for transitions |i⟩ → |n⟩, which is known as Fermi’s Golden Rule

[75, 78, 80, 81]

Γni =
1

}2
|vni|2S(ωni). (2.13)
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For a system where the two lowest-energy states |0⟩, |1⟩ are the qubit states, the full depolarization

rate is Γ1 = Γrel + Γexc + Γesc, where

Γrel =
1

}2
|v10|2S(+|ω10|), Γexc =

1

}2
|v10|2S(−|ω10|), Γesc =

1

}2
∑
i=0,1
n>1

|vni|2S(−|ωni|), (2.14)

describing the rates for relaxation, excitation and escape from the qubit subspace, respectively. We

generally assume that the noise source is in thermal equilibrium [80] and therefore obeys detailed

balance

S(−ω) = S(ω) exp(−}ω/kBT ). (2.15)

Thus qubit excitation is suppressed relative to qubit relaxation. However, for low-frequency qubits

where }ω ≲ kBT , all of relaxation, excitation and escape processes can meaningfully contribute

to depolarization.

2.1.2 Pure dephasing

We now turn our attention to calculating pure dephasing rates. We first consider the case when the

first-order terms dominate, before discussing pure dephasing at a sweet spot where the second-

order terms must be included. In the context of pure dephasing, we ignore the terms causing

transitions in Eq. (2.4). In this case the dynamical equations (2.8) for the coefficients cn(t) are

independent and can immediately be solved, yielding

cn(t) = cn(0) exp

[
− i

}

∫ t

0
∂λEnδλ(t

′)dt′

]
. (2.16)

Let us suppose that at time t = 0 we have a superposition of the qubit states |ψ(0)⟩ = c0(0)|0⟩ +

c1(0)|1⟩. The off-diagonal component of the density matrix at time t is

ρ01(t) = c0(0)c
∗
1(0) exp

[
− i

}
∂λE01

∫ t

0
δλ(t′)dt′

]
, (2.17)
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defining ∂λE01 = ∂λE0 − ∂λE1. The exponential encodes the decay of the coherence. To charac-

terize the timescale associated with this decay (as in a typical Ramsey experiment), one averages

over multiple repeated measurements. Thus, we calculate the ensemble average ⟨ρ01⟩(t). Indeed,

because the noise δλ is a random Gaussian signal, the phase of the exponential is itself a random

Gaussian process. The quantity ⟨e−iϕ(t)⟩ is then known as the characteristic function [82] of the

random variable ϕ(t). For a Gaussian random variable with zero mean, the characteristic function

is ⟨e−iϕ(t)⟩ = e−
1
2
⟨ϕ2(t)⟩ [80, 82], yielding

⟨ρ01⟩(t) = c0(0)c
∗
1(0) exp

[
− 1

2}2
|∂λE01|2

∫ t

0
dt′
∫ t

0
dt′′⟨δλ(t′ − t′′)δλ(0)⟩

]
. (2.18)

Changing variables and extending the bounds of integration in the same manner as discussed in

the context of Eq. (2.11), we recognize the inner integral as S(0) and obtain [75, 83, 84]

⟨ρ01⟩(t) = c0(0)c
∗
1(0) exp

[
− 1

2}2
|∂λE01|2S(0)t

]
, (2.19)

from which we read off the pure-dephasing rate

Γϕ =
1

2}2
|∂λE01|2S(0). (2.20)

This result agrees with those of Refs. [75, 83] after accounting for the differing factors of 2π in the

definition of S(ω). Some authors refer to this as a “Golden-Rule type” result [75]. Note however

that we were not forced to employ perturbation theory to derive Eq. (2.20), whereas Fermi’s Golden

Rule typically relies on first-order perturbation theory. If the qubit is biased at a sweet spot, second-

order effects of the noise can become important. We include such effects in Ch. 5 for the important

case of 1/f noise.
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2.2 Protection

With the expressions for the rates of depolarization and pure dephasing in hand, we now consider

in detail the principle behind protected qubits. Hardware-level noise protection is obtained by

simultaneously suppressing the matrix elements relevant for relaxation and excitation as well as

the dispersion of the qubit energy difference relevant for pure dephasing, see Eqs. (2.14) and

(2.20). To gain intuition, we first consider qubits that are protected from either depolarization or

pure dephasing but not both. Following this we discuss possible realizations of fully-protected

qubits.

2.2.1 Partially protected qubits

To obtain hardware-level protection from pure dephasing, the first step is to suppress the linear

dispersion of the qubit energy with a noisy external parameter, see Eq.(2.20). This is typically

known as operating at a sweet spot [37, 85]. Further protection from pure dephasing can be

obtained by exponentially suppressing the dispersion. A famous example of a qubit protected

from dephasing in this manner is the transmon qubit [38, 86]. The Hamiltonian of the transmon is

[38]

Htmon = 4EC(n− ng)
2 − EJ cos(ϕ), (2.21)

where ng is the offset charge, EC is the charging energy and EJ is the Josephson energy. The

operator n plays the role of momentum and its spectrum is integer valued, counting the number of

Cooper pairs on the superconducting island of the transmon [38, 87]. The gauge-invariant phase

ϕ = 2πΦ/Φ0 is defined in terms of the superconducting phase Φ across the junction, where Φ0 =

h/2e is the superconducting flux quantum. These operators obey the funny-looking commutation

relation [eiϕ, n] = −eiϕ [87]. We cannot write the commutation relation in terms of ϕ by itself

because that operator is not meaningful in this context, as the Hamiltonian and therefore the wave

functions are periodic in ϕ.
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(a)

(b)

(c) (d)

Figure 2.1: Wave functions and spectrum of the transmon. (a)-(b) Wave functions in the charge
basis of the two lowest-lying states of the transmon at ng = 0.1. The delocalization of the eigen-
states in charge space is the origin of protection from dephasing due to charge noise. (c) Spectrum
as a function of offset charge ng. For the lowest-lying levels, the spectrum is flat before charge-
sensitivity is re-established by the higher-lying states. (d) Wave functions in phase space. The
qubit wave functions are localized in the same potential well and thus do not have disjoint support.
Numerical results were obtained using transmon parameters EJ/h = 15 GHz, EC/h = 0.3 GHz.

One source of external noise causing dephasing in the transmon is fluctuations in the value of

ng. The transmon’s protection from such charge fluctuations derives from operating in the param-

eter regime EJ ≫ EC , leading to delocalization of the qubit wave functions in charge space [see

Fig. 2.1(a)-(b)]. This nature of the qubit wave functions prevents the charge-number operator n [the

operator that couples to ng, see Eq. (2.21)] from discriminating between the qubit states. Observe

that this feature generally leads to a vanishing of the linear dispersion of the qubit frequency, as

∂λE01 = ⟨0|∂λH0|0⟩ − ⟨1|∂λH0|1⟩. Indeed the charge dispersion of the qubit frequency is expo-

nentially suppressed in the transmon regime [see Fig. 2.1(c)] [38]. This “sweet-spot everywhere”

approach yields protection from dephasing due to charge noise.

There is a cost however to the protection gained from pure-dephasing processes. The qubit

states are localized in the same potential well in position (phase) space [see Fig. 2.1(d)], and thus

matrix elements |⟨0|O|1⟩| with respect to some local operator O (for instance the charge-number

operator n) are typically of order unity. Thus the transmon is not protected from relaxation.

One straightforward means to suppress ⟨0|O|1⟩ and obtain protection from relaxation is to en-

gineer the qubit wave functions to be localized in different regions of variable space. The wave

functions are then said to have “disjoint support” [88, 89]. As long as the perturbing operator O is
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a local operator (like charge or phase, as opposed to a displacement operator), the matrix element

⟨0|O|1⟩ is exponentially suppressed, dominated by tails of the qubit wave functions [90]. An ex-

ample qubit whose wave functions can enjoy disjoint support is the fluxonium qubit [91, 92]. The

fluxonium Hamiltonian is [29, 30]

Hfl = 4ECn
2 − EJ cos(ϕ) +

1

2
EL(ϕ− ϕext)

2, (2.22)

where EC is the charging energy, EJ is the Josephson energy, EL is the inductive energy and

ϕext = 2πΦext/Φ0 is the reduced flux defined in terms of the magnetic flux Φext. The fluxonium

Hamiltonian is not periodic in ϕ, thus the spectrum of the charge operator n is no longer discrete

and ϕ is now a meaningful operator. The operators n and ϕ are canonically conjugate and obey

the standard commutation relation [ϕ, n] = i.

For parameter choices in the “heavy-fluxonium” regime EJ ≫ EC ≳ EL [91, 92] and away from

integer or half-integer values of Φext/Φ0, the two lowest-lying wave functions localize in different

minima of the fluxonium potential, see Fig. 2.2(a). These states serve as the qubit states and are

protected from relaxation by disjoint support [91, 92]. Unfortunately, this qubit is not simultaneously

protected from dephasing, as it is linearly susceptible to flux noise [91]. This is clear from the

spectrum of the fluxonium, where away from integer or half-integer flux the quantity ∂ΦextE01 is

nonzero, see Fig. 2.2(b). If instead we bias at e.g. a point of half-integer flux where the spectrum is

first-order insensitive to flux noise, the qubit states delocalize and are unprotected from relaxation.

We thus observe that in single-mode circuits like the transmon and the fluxonium, it is difficult

if not impossible to obtain full protection from both depolarization and dephasing. In the following

we investigate two means for bypassing this limitation. The first strategy involves careful choice

of parameters to enhance coherence times in single-mode circuits. The second is considering

more complex circuits (with more than one degree of freedom) that may be engineered to have full

protection from relaxation and dephasing.
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(a) (b)

Figure 2.2: Wave functions and spectrum of the fluxonium. (a) Wave functions at Φext = 0.4Φ0.
The two lowest-lying wave functions localize in neighboring minima of the potential. (b) Spectrum
as a function of flux. Away from degeneracy points, the energy splitting E01 is linearly sensitive
to the external flux Φext. Fluxonium parameters used here are EJ/h = 5 GHz, EL/h = 0.3 GHz,
EC/h = 1 GHz.

2.2.2 Partially protected qubits + (premium)

In circuits like the transmon or fluxonium, it is generally only possible to obtain hardware-level pro-

tection from depolarization or dephasing, but not both [88]. This limitation may be circumvented

by instead operating a dephasing-protected qubit in a frequency regime where the noise-power

spectrum relevant for relaxation is suppressed. Thus, while transition matrix elements can be of

order unity, the depolarization rate can still be made relatively small. This configuration is achieved

in the heavy-fluxonium circuit [91, 92], specifically biased at the half-flux sweet spot Φext = 0.5Φ0

[31]. At this point, the energy spectrum of the qubit is only quadratically sensitive to flux noise, see

Fig. 2.2(b). It is well known that typical charge noise amplitudes (in units of 2e) exceed typical flux

noise amplitudes (in units of Φ0) by more than an order of magnitude [41]. Thus the linear suppres-

sion of flux noise is sufficient to achieve record dephasing times from hundreds of microseconds to

milliseconds [31, 32, 33]. These results stand in contrast to those for CPB qubits biased at charge

sweet spots, with dephasing times of the order of a microsecond or less [37, 75, 85].

At the half-flux sweet spot the qubit eigenstates delocalize over the two lowest-energy minima
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(a) (b)

Figure 2.3: Fluxonium at the half-flux sweet spot. (a) Wave functions and potential of the flux-
onium when biased at Φext = 0.5Φ0. The two lowest-lying states delocalize over the neighboring
degenerate minima. (b) Qubit frequency ω10 (contour lines) and depolarization time due to di-
electric loss T diel

1 (coloring) as a function of EJ , EL. The quantities ω10 and T diel
1 are inversely

correlated in this parameter regime. We used the same fluxonium parameters as in Fig. 2.2, as
well as 1/Qcap = 4 · 10−6 [31].
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of the potential, see Fig. 2.3(a). These states have support in the same regions of variable space,

and matrix elements relevant for relaxation (such as ⟨1|ϕ|0⟩) are not suppressed. Thus there is no

hardware-level protection from relaxation. Instead, here we seek to suppress the contribution from

the noise-power spectrum in Eq. (2.14). We focus on depolarization due to dielectric loss, which

numerous experiments on fluxonium qubits have found to be limiting T1 [31, 32, 33].

This noise channel can be modeled by assuming that the dielectric constant of the relevant ca-

pacitor has an imaginary component, leading to a nonzero value for the real part of the admittance

[93]. The noise-spectral density at positive frequencies is then [32, 78, 93, 94, 95, 96, 97, 98]

Sdiel(ω10) =
}ω2

10C

Qcap

(
coth

[
}ω10

2kBT

]
+ 1

)
, (2.23)

where Qcap is the quality factor (which can have a weak frequency dependence [32]), C is the

relevant capacitance, ω10 is the qubit frequency, kB is the Boltzmann constant and T is the tem-

perature. Including both relaxation and excitation and ignoring escape from the qubit subspace (a

good approximation for the highly anharmonic fluxonium qubit), the depolarization rate is

Γdiel
1 =

1

}2
(Sdiel[ω10] + Sdiel[−ω10])|⟨1|Φ|0⟩|2 =

}ω2
10

4ECQcap
coth

(
}ω10

2kBT

)
|⟨1|ϕ|0⟩|2, (2.24)

making explicit use of Eq. (2.15). Consider now the limit of small qubit frequencies }ω10/kBT ≪ 1.

In this case we obtain

Γdiel
1 ≈ ω10kBT

2ECQcap
|⟨1|ϕ|0⟩|2. (2.25)

By varying for instance the device parameters EJ and EL, we verify the inverse scaling of T diel
1 ≡

1/Γdiel
1 [Eq. (2.24)] and ω10 predicted by Eq. (2.25),1 see Fig. 2.3(b). A recent experiment has

confirmed that dielectric loss remains the dominant contributor to depolarization for qubit frequen-
1It is worth stressing here that we are restricting the fluxonium to operate at the sweet spot. Thus while the matrix

element ⟨1|ϕ|0⟩ generally has nontrivial flux dependence, that is not relevant to our current discussion. Indeed, varying
EJ andEL across a wide range of parameters, ⟨1|ϕ|0⟩ is approximately a constant, making ω10 the only varying quantity
in Eqs. (2.24)-(2.25) [99].
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cies as low as ω10/2π = 10 MHz [31]. The depolarization rate can thus be suppressed by effec-

tively modifying the frequency at which the noise-spectral density is sampled. Despite lacking full

hardware-level noise protection, the heavy fluxonium biased at the sweet spot has shown record

coherence times, from hundreds of microseconds [31, 32] to milliseconds [33].

It is important to ensure that in lowering the qubit frequency, there is no (or very little) corre-

sponding slowdown in gate times. If there were such a trade off, there would be no net benefit

because the number of executable gates in a quantum circuit would not increase. If we limit our-

selves to gates that are executed by driving on resonance with a particular transition within the

framework of the RWA, then indeed there would be a corresponding slowdown [14]. However,

recent work [31, 55, 100, 101] has shown that there is no fundamental limit on gate speeds relative

to qubit frequencies. Ficheux et al. demonstrated a fast and high-fidelity two-qubit gate on qubits

with frequencies of 72 and 136 MHz by driving non-computational transitions [100]. Campbell et

al. [55] and Zhang et al. [31] demonstrated high-fidelity single-qubit gates in low-frequency qubits

using nonadiabatic, non-resonant drives. A schematic of the pulse scheme used in Ref. [31] for

a Y/2 gate along with associated Bloch-sphere trajectories are shown in Fig. 2.4. Thus, it is not

necessarily true that gate times must increase as qubit frequencies are lowered.

2.2.3 Fully-protected qubits

A popular strategy to obtain simultaneous protection from both relaxation and dephasing in super-

conducting circuits is to construct a qubit whose potential is effectively “cos(2ϕ)” [43, 44, 46, 47,

49, 50, 51, 52, 53, 79, 89, 94, 102, 103]. The unifying idea behind such qubits is that if single-

Cooper-pair tunneling can be suppressed in favor of the tunneling of pairs of Cooper pairs, then

the potential energy of the circuit can effectively be written as U = −E2 cos(2ϕ) − E1 cos(ϕ) with

E1 ≪ E2. Indeed this is the idea behind Kitaev’s current-mirror qubit [52] which we analyze in detail

in Chs. 5-6. If the relevant kinetic energy scales are dominated by the effective potential energy

E2, then eigenstates localize in the inequivalent minima at ϕ = 0 and ϕ = π (hence, e.g., the name

0 − π [102]), see Fig. 2.5. The two lowest-energy eigenstates are typically taken to be the qubit
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Figure 2.4: Non-adiabatic single-qubit gates in a fluxonium qubit. (a) A Y/2 gate is obtained by
using fast, triangle-shaped flux pulses of amplitude A and −A combined with idling at the sweet
spot. (b) Schematic of the energy-level diagram of the fluxonium near the sweet spot. (c) Bloch
sphere trajectories of the initial states |0⟩ (teal), (|0⟩ + |1⟩)/

√
2 (purple), and (|0⟩ + i|1⟩)/

√
2 (red)

subject to the Y/2 pulse. The authors of Ref. [31] utilized the parametersA/h = 184MHz, ω10/2π =
14MHz, ∆tp = 5 ns, ∆tz = 24 ns and obtained a Y/2 gate with fidelity F = 0.9992. Figure modified
from Ref. [31] with permission of the authors.
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Figure 2.5: Principle of a cos(2ϕ) or 0 − π qubit. For a circuit with effective potential energy
U = −E2 cos(2ϕ) − E1 cos(ϕ) where E1 ≪ E2, the minima at ϕ = 0 and ϕ = π are nearly
degenerate. The lowest-energy states localized in each minimum are the qubit states. These
states are protected from relaxation by disjoint support. If E1 does not vary with noisy external
parameters, then the states are protected from pure dephasing.

states, commonly denoted as |0⟩, |1⟩ or |0⟩, |π⟩. If E1 is small and moreover does not vary with any

noisy external parameters, then we obtain a robust (near-) degeneracy of the ground state. This

provides protection from pure dephasing.

Protection from relaxation is due to the disjoint support between the qubit states localized in

different potential wells. Notably, if single Cooper-pair tunneling is entirely suppressed E1 = 0, the

two minima are exactly degenerate and eigenstates delocalize. Indeed, if the tunnel splitting van-

ishes then any linear combination of the localized states is itself an eigenstate. This presents an

issue for state preparation, which for high-frequency qubits typically consists of passive initializa-

tion (simply waiting for a time much longer than T1 so that the qubit has with certainty relaxed to the

ground state) [104]. Such a procedure here will not generally prepare the system in the state |0⟩ or

|1⟩ but rather in a statistical mixture of the two states. Thus, more sophisticated state-preparation

schemes are necessary. Moreover, due to the suppression of local matrix elements, the execution

of gates typically relies on global operators [42, 102] or traversals through higher-lying states [53,

103]. The former option appears difficult to physically implement [103]. The latter option has been

realized experimentally [53], but is problematic due to the absence of protection from decoherence

for the higher-lying states. Protocols and techniques for performing both high-fidelity state prepa-

ration as well as physically-realizable protected gates represent important open questions in the
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road to realizing a fully-protected superconducting qubit.
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3 Tight Binding for Superconducting

Circuits
This chapter is based on material published in D. K. Weiss et al., Phys. Rev. Research 3, 033244

(2021).

Research on superconducting qubits has repeatedly encountered physics familiar from mod-

els and phenomena in solid-state physics. Examples include the close connection between the

Cooper pair box and a particle in a one-dimensional crystal, or the interpretation of the fluxonium

Hamiltonian in terms of Bloch states subject to interband coupling [29]. Another analogy, which

points to the computational technique developed in this chapter and applied to circuits like the

current mirror in Ch. 6, is the consideration of crystal electrons in the tight-binding limit. In this

regime, tunneling between electronic orbitals of different atoms is weak, and linear combinations

of atomic orbitals constructed by “periodically repeating” localized wave functions serve as a mean-

ingful basis. The tight-binding method then employs this basis in an approximate solution to the

Schrödinger equation. An analogous scenario can be encountered for superconducting circuits as

shown in Fig. 3.1. Minima of the potential energy may give rise to localized states that are only

weakly connected by tunneling to partner states in other potential minima. The “atomic orbitals”

which we will refer to as “local wave functions” in this case can be identified with the harmonic

oscillator states associated with a local Taylor expansion around each minimum.

We will find this technique useful due to the difficulty of simulating superconducting circuits with

an increasing number of degrees of freedom. Large circuits, especially of the size considered for

the current mirror [52] or rhombi lattice [47], pose significant challenges for the quantitative analy-

sis of energy spectra and prediction of coherence times. Consequently, the development of more
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Figure 3.1: Comparison between tight binding as applied to solids and superconducting circuits.
Left: example of a two-dimensional lattice with a two-atom basis, signified by the grey and blue
atoms; far left: example atomic wave functions. Right: potential of the flux qubit, with two inequiv-
alent minima in each unit cell at the chosen value of flux. We only color the potential below a cutoff
value to draw the eye to the potential minima locations. Near the minima the potential is approx-
imately harmonic, therefore the local wave functions take the form of harmonic oscillator states,
see far right.

efficient numerical tools capable of solving for eigenstates and eigenenergies of large supercon-

ducting circuits has emerged as a vital imperative. Strategies recently introduced for that purpose

include hierarchical diagonalization [105, 106], adaptive mode decoupling [107], and DMRGmeth-

ods [108, 109, 110]. We propose variational tight binding as another strategy complementing the

former ones [111].

Since the Hilbert space dimension d of even a single transmon circuit is infinite, it is not fully

accurate to blame the “growth” of d for the challenges encountered with circuits of larger size.

Nonetheless, when representing a Hamiltonian in a basis not specifically tailored for the problem

at hand, the dimension of the truncated Hilbert space typically grows exponentially when choosing

the truncation level such that a particular level of convergence is reached. This turns the numerical

diagonalization of a circuit Hamiltonian into a hard problem. An approach to address this challenge

introduced in Ch. 3 consists of constructing basis states which more closely approximate the de-

sired low-energy eigenstates from the very beginning. As long as construction of the tailored basis

and decomposition of the Hamiltonian in that basis can be accomplished efficiently, this approach

will allow for reduced truncation levels and hence enable coverage of circuit sizes otherwise inac-
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cessible numerically.

Our construction of such tailored basis states is based on the observation that low-lying eigen-

states of superconducting circuits are often localized in the vicinity of minima of the potential energy,

when expressed in terms of appropriate generalized-flux variables. If the potential energy is peri-

odic or at least periodic along certain axes, then the situation resembles the setting of a particle in

a periodic potential, as commonly encountered in solid-state physics when considering electrons

inside a crystal lattice. In the regime where tunneling between atomic orbitals of different atoms

is weak, tight-binding methods are appropriate for band structure calculations [112, 113]. An anal-

ogous treatment has previously been applied to small circuits; see, for example, the discussions

of tunneling between minima in the flux qubit [114, 115, 116, 117], the derivation of an asymptotic

expression for the charge dispersion in the transmon qubit [38], or the analysis of charge noise in

the fluxonium circuit [118]. Chirolli and Burkard carry out a full tight-binding description of the low-

energy physics of the flux qubit, considering Bloch sums of harmonic oscillator ground-state wave

functions localized in each minimum at the half-flux sweet spot [115]. Motivated by the new interest

in circuits of increased size and complexity, we build upon this research in two specific ways. First,

we consider multiple basis states in each minimum, to both improve ground-state energy estimates

and extract excited-state energies. Second, we consider minima that are not necessarily identical,

and introduce an efficient means of calculating matrix elements between states localized in such

inequivalent minima. These techniques allow us to demonstrate that tight-binding methods can be

adapted for efficient computation of energy spectra of large circuits.

3.1 Local-wave function construction

The starting point for this treatment is the full circuit HamiltonianH = T +V . To stress the analogy

with the setting of an infinite crystal, we first focus on a purely periodic potential V (ϕ⃗), as realized

by a circuit that does not include any inductors. (Including inductors is possible, which we comment

on further in Sec. 3.2.) In terms of the node variables ϕ⃗ = (ϕ1, . . . , ϕNd
)T , where Nd is the number

of degrees of freedom, the potential energy obeys the periodicity condition V (ϕ⃗ + 2πj⃗) = V (ϕ⃗)
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with j⃗ ∈ ZNd and thus forms a (hyper-)cubic Bravais lattice. Within the central unit cell defined

by ϕ⃗ ∈ [−π, π)×Nd , the potential energy will exhibit a set of M minima located at positions θ⃗m,

m = 0, 1, . . . ,M , where m orders the minima from lowest to highest in energy.1 In the language

of solid-state physics, this set of minima corresponds to the multi-atomic basis associated with the

Bravais lattice.

The analogy with solid-state physics is further strengthened by considering a gauge where the

offset charge dependence is shifted from the Hamiltonian to the wave functions [115, 119]. In this

representation, solutions |ψ⟩ to the full Hamiltonian H obey quasiperiodic boundary conditions

T
θ⃗
|ψ⟩ = e−in⃗g ·θ⃗|ψ⟩, (3.1)

for every θ⃗ in the Bravais lattice, where T is the translation operator and n⃗g = (ng1, · · · , ngNd
)T

is the vector of offset charges. We recognize Eq. (3.1) as an expression of Bloch’s theorem with

wavevector −n⃗g (typically denoted as k⃗ in a solid-state context).

The construction of the local wave functions now proceeds by diagonalizing the individual har-

monic oscillator Hamiltonians obtained by Taylor expansion around each minimum. We emphasize

that the following discussion is quite general, and is equivalent to but rather simpler than similar

treatments of harmonic-mode diagonalization in the literature [120, 121]. Expanding around the

mth minimum up to second order we obtain the harmonic Hamiltonian H ′
m = T + Vm, where

Vm =
1

2

∑
i,j

ϕ20ϕ
(m)
i Γ

(m)
ij ϕ

(m)
j . (3.2)

Here, ϕ0 = }/2e is the reduced flux quantum, Γ (m)
ij = ϕ−2

0 ∂ϕi
∂ϕj

V |
θ⃗m

the inverse of the inductance

matrix and ϕ⃗(m) = ϕ⃗ − θ⃗m the “position” relative to the minimum location. The local Hamiltonian

then takes the form

H ′
m =

1

2

∑
i,j

(
ni8

e2

2
(C)−1

ij nj + ϕ20ϕ
(m)
i Γ

(m)
ij ϕ

(m)
j

)
, (3.3)

1Degenerate minima pose no issue, and the ordering is decided arbitrarily.
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where ni is the charge number operator for node i obeying the commutation relation [ϕ
(m)
j , nk] =

iδjk and C is the capacitance matrix. Hereafter, explicit references to m will be omitted for nota-

tional simplicity. To obtain the eigenstates of the coupled oscillator Hamiltonian Eq. (3.3) we first

determine its normal modes. This is accomplished most efficiently based on the corresponding

classical Lagrangian

L′ =
1

2
ϕ20
∑
i,j

(
ϕ̇iCijϕ̇j − ϕiΓijϕj

)
. (3.4)

(We emphasize that all variables appearing in Eq. (3.4) are classical.) Using the usual oscillatory

solution ansatz ϕ⃗ = ξ⃗µe
−iωµt reduces the equations of motion to the generalized eigenvalue prob-

lem Γ ξ⃗µ = ω2
µC ξ⃗µ [122]. Here, Latin indices refer to node variables, and Greek indices to normal

mode variables. The eigenmode vectors ξ⃗µ are only determined up to normalization, ξ⃗ T
µ C ξ⃗µ = cµ,

implying ξ⃗ T
µ Γ ξ⃗µ = ω2

µcµ, where cµ is undetermined. Normalization will be fixed when we return to

the quantum-mechanical description, in such a way that the Hamiltonian for each mode takes the

standard form

H ′
µ/}ωµ =

1

2

(
− ∂2

∂ζ2µ
+ ζ2µ

)
. (3.5)

Here, ζ⃗ = (ζµ) collects the normal-mode variables related to the original generalized fluxes via

ϕ⃗ = Ξζ⃗, where Ξ is the matrix of column vectors ξ⃗µ and encodes both the normal-mode directions

and oscillator lengths. In these new variables, both bilinear forms in L′ are diagonal. Legendre

transform and quantization thus readily yield

H ′ =
1

2

∑
µ

[
−
(

}
ϕ0

)2 1

cµ

∂2

∂ζ2µ
+
(
ϕ0ωµ

)2
cµζ

2
µ

]
. (3.6)

To castH ′ into the form suggested by Eq. (3.5) we now choose cµ = (2e)2/}ωµ as our normalization

constants. We denote the eigenstates of H ′ by |s⃗,m⟩. Here, s⃗ collects the excitation numbers

sµ = 0, 1, . . . for each mode µ and m specifies the minimum of interest.
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3.2 Bloch summation and the generalized eigenvalue problem

Solution of the Schrödinger equation H|ψ⟩ = E|ψ⟩ proceeds by expressing the Hamiltonian H

in matrix form using an appropriate basis. We construct this basis by periodic repetition over the

entire Bravais lattice of the local wave functions |s⃗,m⟩ defined in the central unit cell, subject to

quasiperiodic boundary conditions [Eq. (3.1)]

|ψn⃗g ,s⃗,m⟩ = 1√
N

∑
j⃗

e−in⃗g ·(2πj⃗+θ⃗m)T2πj⃗ |s⃗,m⟩,= 1√
N

∑
j⃗

|s⃗,m; j⃗⟩, (3.7)

implicitly defining the kets |s⃗,m; j⃗⟩ which are localized in minimum m in the unit cell located at

2πj⃗ and are offset-charge dependent. Here, N is the number of unit cells. It is straightforward to

show that |ψn⃗g ,s⃗,m⟩ satisfies the quasiperiodicity condition (3.1). We now represent the Schrödinger

equation in terms of these basis states. Due to their lack of orthogonality, this transforms the

Schrödinger equation into the generalized eigenvalue problem

1

N
∑
s⃗,m

∑
j⃗ ,⃗j ′

(
⟨s⃗ ′,m′; j⃗ ′|H|s⃗,m; j⃗ ⟩ − E⟨s⃗ ′,m′; j⃗ ′|s⃗,m; j⃗ ⟩

)
bs⃗,m = 0, (3.8)

where E is the eigenenergy and bs⃗,m are the coefficients in the decomposition

|ψn⃗g⟩ =
∑
s⃗,m

bs⃗,m|ψn⃗g ,s⃗,m⟩. (3.9)

Eq. (3.8) can be simplified by performing one of the sums over lattice vectors [112]. We express

the kets explicitly in terms of the translation operators

|s⃗,m; j⃗⟩ = e−in⃗g ·(2πj⃗+θ⃗m)T2πj⃗ |s⃗,m; 0⃗⟩, (3.10)
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and note that the operator T2πj⃗ commutes with the Hamiltonian. The summation yields a factor of

N and we obtain

∑
s⃗,m

∑
j⃗

(
⟨s⃗ ′,m′; 0⃗ |H|s⃗,m; j⃗ ⟩ − E⟨s⃗ ′,m′; 0⃗ |s⃗,m; j⃗ ⟩

)
bs⃗,m = 0. (3.11)

Formally, Eq. (3.11) now has the standard form of a generalized eigenvalue problem with two

semidefinite positive Hermitian matrices and can be handled numerically by an appropriate solver.

To perform the diagonalization, the crucial remaining task consists of the efficient evaluation of the

matrix elements and state overlaps in Eq. (3.11) which we cover in Ch. 6. Note that an alternative

route to this equation is application of the variational principle to ⟨ψn⃗g |H|ψn⃗g⟩ = E⟨ψn⃗g |ψn⃗g⟩ [123];

the benefit of this viewpoint is that the eigenenergies thus obtained represent upper bounds to the

true eigenenergies of the system [123, 124].

Our analysis thus far has assumed a purely periodic potential, allowing for a direct analogy with

the theory of tight binding as applied to solids. Including inductive terms in the potential immediately

implies that associated degrees of freedom are no longer subject to (quasi-)periodic boundary

conditions. Alternatively, we can say that the unit cell extends along the relevant axes. To include

such inductive potential terms, we therefore do not perform periodic summation in Eq. (3.7) along

these non-periodic directions.

3.3 Example: transmon

We now consider the simple example of applying the previously developed theory to the transmon.

The Hamiltonian of the transmon is [38]

Htmon = 4EC(−i∂ϕ − ng)
2 − EJ cos(ϕ), (3.12)
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charge basis exact harmonic osc.(a) (b) (c)

Figure 3.2: Comparison of charge-basis and harmonic-oscillator states to exact transmon eigen-
functions. (a) The real and imaginary parts of the charge-basis states . (b) Exact transmon eigen-
states for EJ/EC = 30 obtained from diagonalization in the charge basis. (c) Harmonic-oscillator
states with oscillator length Ξ = (8EC/EJ)

1/4.

where we write the conjugate momentum in the ϕ basis as n = −i∂ϕ. The gauge transformation

to remove the offset charge from the Hamiltonian is U = e−ingϕ, yielding

H̄tmon = e−ingϕHtmone
ingϕ = −4EC∂

2
ϕ − EJ cos(ϕ). (3.13)

Before the gauge transformation, the wave functions obeyed periodic boundary conditions ψ(ϕ +

2π) = ψ(ϕ). The transformed wave functions ψ̄(ϕ) = e−ingϕψ(ϕ) now obey quasiperiodic boundary

conditions ψ̄(ϕ+ 2π) = e−i2πng ψ̄(ϕ), c.f. Eq.(3.1).

Expanding the potential around the only minimum in the central unit cell at ϕ = 0 yields the

local Hamiltonian

H̄ ′
tmon = −4EC∂

2
ϕ +

EJ

2
ϕ2. (3.14)

Because the transmon has only a single degree of freedom, the capacitance and inverse induc-

tance matrices are just numbers and we obtain Ξ = (8EC/EJ)
1/4. This is the well-known expres-

sion for the harmonic length of the transmon [38].

Deep in the transmon regime EJ ≫ EC [38], the local wave functions (harmonic-oscillator
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states) qualitatively match the exact transmon wave functions obtained numerically, see Fig. 3.2.

Of course, the harmonic-oscillator states must be periodically repeated in the manner shown in

Eq. (3.7) to obtain wave functions that obey the correct boundary conditions. On the other hand, the

HamiltonianHtmon is typically expressed in the charge basis for a numerical analysis of eigenvalues

and eigenstates, identifying cos(ϕ) = 1
2(
∑

n n|n⟩⟨n+1|+H.c.). Here, the state |n⟩ corresponds to

the number n of Cooper pairs having passed through the junction of the transmon. In the transmon

regime, individual charge-basis states are not good approximations to transmon eigenstates, see

Figs. 2.1 and 3.2. This implies that we generally need fewer tight-binding states as compared to

charge basis states to obtain a specified level of numerical accuracy. For the small-scale example

of the transmon, this numerical benefit likely does not outweigh the increase in complexity of the

tight-binding method relative to diagonalization in the charge basis. However, we show in Ch. 6

that for larger circuits, the tight-binding method allows for the numerical analysis of circuits that are

out of the reach of charge-basis diagonalization.
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4 Control
This chapter is based on the recent preprint (submitted for publication) D. K.Weiss et al., arXiv:2207.

03971 (2022).

In search of two-qubit gate fidelities exceeding the current state-of-the-art, it is worth re-examining

the framework routinely used for developing the pulse trains which generate the gates of interest.

Most commonly, this framework is intimately linked to the use of the rotating-wave approximation

(RWA) [125]. This approximation is highly convenient as it can help remove fast time dependence

from the Hamiltonian, yields an intuitive picture of the dynamics, and makes calculations particu-

larly simple [14]. However, the range of validity of the RWA is limited and reliance on it constrains

the parameter space explorable for maximizing gate fidelities.

Indeed, strong drives beyond the reach of the RWA have been shown to yield high-fidelity

gates [31, 55], see also Fig. 2.4. To predict the time evolution in this regime we employ a Magnus

expansion [65, 66, 67]. In the following we first derive the general form of the Magnus expansion,

before applying it to the textbook example of a two-level system subject to a transverse drive.

We identify two regimes of interest for applying the Magnus expansion. The first is where the qubit

frequency is larger than the drive amplitude. Here, the first-order effects reduce to the RWA results,

while higher-order terms in the Magnus expansion yield corrections to the RWA. The second is the

regime where the drive strength overwhelms the qubit frequency. This case represents an extreme

breakdown of the RWA, where it ceases to have any validity whatsoever.
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4.1 Magnus expansion derivation

In the following, we closely follow Ref. [66]. We assume an exponential solution U(t) = exp[Ω(t)]

to the differential equation

dU(t)

dt
= λA(t)U(t), (4.1)

where we have introduced the order-counting parameter λ that is set to 1 at the end of the cal-

culation. The time-dependent Schrödinger equation is a special case of Eq. (4.1), with A(t) =

−iH(t)/}, where H(t) is the time-dependent Hamiltonian and U(t) is the propagator. The argu-

ment Ω of the exponential is expanded as Ω(t) =
∑∞

n=1 λ
n∆n(t), and the goal is to obtain explicit

expressions for the ∆n(t). To proceed, we make use of the parameter-differentiation formula [66]

d

dν
exp(βΩ) =

∫ β

0
du exp([β − u]Ω)

dΩ

dν
exp(uΩ), (4.2)

where ν is some parameter, Ω ≡ Ω(ν) and β is independent of ν. This formula can be derived e.g.

using the powerful operator-ordering calculus introduced by Feynman [126]. Observe that Eq. (4.2)

reduces to the usual expression d
dν e

βΩ = β
(
dΩ
dν

)
eβΩ when the quantities involved are c-numbers

as opposed to operators. To cast Eq. (4.2) into a more useful form, we make the substitutions

β = 1, u = 1− x and ν = t, yielding

d

dt
eΩ =

∫ 1

0
dx exΩ

dΩ

dt
e−xΩeΩ. (4.3)

Equating Eqs. (4.1) and (4.3) we obtain

∫ 1

0
dx exΩ

dΩ

dt
e−xΩ = λA(t). (4.4)
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To expand the left-hand side of Eq. (4.4), we utilize the Baker-Campbell-Hausdorff (BCH) formula

[66, 127, 128, 129, 130]

eSHe−S =
∞∑
n=0

1

n!
(Ŝ)n(H) = H + [S,H ] +

1

2!
[S, [S,H ]] + . . . , (4.5)

introducing notation Ŝ(H) = [S,H ] for the adjoint action of the operator S. We obtain

λA(t) =

∫ 1

0
dx

∞∑
j=0

xj

j!
(Ω̂)j

(
dΩ

dt

)
=

∞∑
j=0

1

(j + 1)!
(Ω̂)j

(
dΩ

dt

)
, (4.6)

performing the integration straightforwardly. Inserting the definition Ω(t) =
∑∞

n=1 λ
n∆n(t) yields

λA(t) =

∞∑
j=0

1

(j + 1)!

 ̂∞∑
n=1

λn∆n(t)

j ∞∑
m=1

λm∆̇m(t)

 (4.7)

= λ∆̇1(t) +
1

2!
λ2[∆1(t), ∆̇1(t)] + λ2∆̇2(t) + . . .

In the last line of Eq. (4.7) we have written out explicitly the terms that contribute up to second order

in λ. We may now obtain expressions for the ∆n(t) by equating the coefficients of like powers of

λ. Equating the first-order terms yields

∆1(t) =

∫ t

0
dt′A(t′). (4.8)

We then insert this result into the second-order equation to obtain

∆2(t) =
1

2

∫ t

0
dt1

∫ t1

0
dt2[A(t1), A(t2)]. (4.9)

Higher-order terms are similarly calculated. Explicit formulas for the ∆n(t) up to n = 4 are given

in, e.g., Ref. [66].

We apply the Magnus expansion in the following to a two-level system subject to a transverse
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sinusoidal drive, described by the Hamiltonian

H = −}ω
2
σz +A sin(ωdt)σx, (4.10)

where ω is the qubit frequency, A and ωd are the drive amplitude and frequency, respectively and

σx, σz are the usual Pauli matrices. In Ch. 7, this Hamiltonian will arise in the context of parametric

flux drives. Upon rotating into a suitable reference frame, the Magnus expansion allows for an

analytic approximation to the time-evolution operator. In particular, we are often interested in the

form of the propagator after an integer number of drive periods such that the pulse contains net-

zero flux [131].

4.2 Relatively weak drive

We consider the regime where the qubit energy is larger than the drive amplitude }ω > A. The

typical parameter regime for high-frequency qubits is }ω ≫ A, where the RWA is expected to be

valid and the formalism employed here is not necessary. If instead the drive amplitude approaches

the qubit frequency }ω ≳ A, then the RWA may fail and corrections to the RWA are required.

To carry out the Magnus expansion in this parameter regime, it is appropriate to move into the

interaction picture defined by the unitary

U0(t) = exp
(
i
ω

2
σzt

)
. (4.11)

The interaction-frame Hamiltonian is

H ′(t) = U †
0HU0 − i}U †

0 U̇0 = A sin(ωdt)[cos(ωt)σx + sin(ωt)σy]. (4.12)

We include the first two terms in the Magnus series. It is straightforward to calculate higher-order

corrections, however we find that they are small and can be neglected for typical parameters utilized
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in Ch. 7. At the conclusion of the gate t = nτd, we obtain

U ′(nτd) = cos (ξ)1− i sin (ξ) (n⃗ · σ⃗), (4.13)

where

n⃗ = (sin[πnω/ωd],− cos[πnω/ωd], ε/ξ), σ⃗ =
(
σx, σy, σz

)
, (4.14)

and we have defined

ξ =
2Aωd

}(ω2
d − ω2)

sin
(
πnω

ωd

)
, ε =

A2ω2
d sin(2πnω/ωd)

}2(ω2
d − ω2)2

+
A2πnω

ωd}2(ω2
d − ω2)

. (4.15)

We have neglected corrections of order O([A/}ωd]
3) to ξ, accounting for the deviation of n⃗ from

being a unit vector. The first-order terms involving σx, σy determine the amount of population trans-

fer between the two states. The second-order terms encode the leading-order beyond-the-RWA

corrections and are proportional to σz. Indeed, in the resonant limit, the first-order term ∆1(nτd) =

−inτd}
A
2 σy reproduces the RWA result [14] while the second-order term ∆2(nτd) = inτd}2

3A2

8ωd
σz cor-

responds to the well-known Bloch-Siegert shift [57, 68]. Transforming the propagator back to the

lab frame via the identity U(τn) = U0(τn)U
′(τn)U0(0)

†, we find

U(nτd) = exp(iϑσz)[cos(ξ)1− iε sinc(ξ)σz] + i sin(ξ)σy (4.16)

≈ cos(ξ) exp{i[ϑ− ε tanc(ξ)]σz}+ i sin(ξ)σy

=

cos(ξ)ei(ϑ−tanc[ξ]ε) sin(ξ)

− sin(ξ) cos(ξ)e−i(ϑ−tanc[ξ]ε)


defining ϑ = πnω/ωd. The approximate equality is valid for tanc(ξ)ε≪ 1, and tanc(x) = tan(x)/x.

Specific unitaries can be engineered by varying the drive parameters A,ωd which determine the

variables ξ, ϵ. Examples of this can be found in Ch. 7.
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4.3 Relatively strong drive

To carry out a Magnus expansion in the regime where the qubit frequency ω is small compared to

the drive amplitude A, it is appropriate to move into the interaction picture with respect to the drive.

This transformation is achieved via the unitary

U0(t) = exp

(
−i
}

∫ t

0
dt′A sin[ωdt]σx

)
= exp

(
−i
}

2A

ωd
sin2

[
ωdt

2

]
σx

)
. (4.17)

The interaction-frame Hamiltonian is

H ′ = −}ω
2

cos

(
4A

}ωd
sin2

[
ωdt

2

])
σz −

}ω
2

sin

(
4A

}ωd
sin2

[
ωdt

2

])
σy. (4.18)

We carry out the Magnus expansion in the interaction frame, and truncate the Magnus series

after the first term (in Ch. 7 we will find numerically that second-order terms are small and can be

neglected). The propagator at time t = nτd = n2π/ωd is

U ′(nτd) = cos

(
nπω

ωd
J0

[
2A

}ωd

])
1+ i sin

(
nπω

ωd
J0

[
2A

}ωd

])(
cos

[
2A

}ωd

]
σz + sin

[
2A

}ωd

]
σy

)
,

(4.19)

where J0 is the zeroth-order Bessel function of the first kind. The propagators in the lab and

interaction frames are related by U(t) = U0(t)U
′(t)U †

0(0). Because the lab and interaction frames

coincide at t = 0 and t = nτd, the propagators in the lab and interaction frames are the same at

the conclusion of the pulse. As in the previous section, in some cases it is possible to analytically

solve for the variables A and ωd that yield a particular quantum gate or unitary. For example, to

obtain an identity gate, the general solution is

nπω

ωd
J0

(
2A

}ωd

)
= 2πr, r ∈ Z. (4.20)
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5 Current Mirror
This chapter is based on material published in D. K. Weiss et al., Phys. Rev. B 100, 224507 (2019)

(Editor’s Suggestion).

In this chapter we analyze the spectrum and coherence properties of the current-mirror circuit,

introduced by Kitaev [52] in 2006 as one of the first proposals for an intrinsically protected super-

conducting qubit. We extend Kitaev’s treatment by performing a full circuit analysis of the device,

and derive an effective model that describes both the origin of the cos(2ϕ)model and the processes

that break degeneracy. Using these results we quantify both the spectrum and coherence times

of the current mirror.

5.1 Full circuit analysis

The current mirror, shown in Fig. 5.1, consists of two linear arrays of N Josephson junctions each

that are capacitively coupled to form a ladder. One end of the ladder is then twisted and connected

to the other end, thus producing a Möbius strip. The upper and lower edges of the strip are con-

nected by capacitors (capacitance CB), forming a series of rungs. In a device with 2N junctions,

there are N such rungs. Each node in the circuit additionally has a small capacitance to ground

(capacitance Cg, not shown in Fig. 5.1). The Josephson junctions are characterized by their junc-

tion capacitance CJ and Josephson energy EJ . The scope of this work is concerned with the ideal

current-mirror circuit in which all junctions, all capacitor rungs, and all ground capacitances are

assumed identical.

The circuit may be described in terms of generalized flux variablesΦi for each node 1 ≤ i ≤ 2N .

To simplify notation, we employ reduced flux variables ϕi = 2πΦi/Φ0. The circuit Lagrangian for
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Figure 5.1: The current-mirror circuit, consisting of an array of Josephson junctions (EJ , CJ ) ca-
pacitively coupled (CB) to form a Möbius strip. Low-energy excitations in the intended parameter
regime are Cooper-pair excitons, such as the one shown on rung 1. An external flux Φext penetrat-
ing the interior of the Möbius strip may be used to tune the spectrum of the circuit.
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the current mirror is obtained using the method of Devoret [96, 97], and reads

L =
1

2

(
Φ0

2π

)2 2N∑
i,j=1

ϕ̇iCijϕ̇j + }
2N∑
j=1

ϕ̇jngj +

2N∑′

j=1

EJ cos(ϕj+1 − ϕj − ϕext/2N), (5.1)

where ngj denotes the offset charge associated with node j. An external magnetic flux Φext =

ϕextΦ0/2π may be applied to the interior of the Möbius strip, as shown in Fig. 5.1. The primed

sum in Eq. (5.1) is understood modulo 2N , i.e., ϕ2N+1 is identified with ϕ1. Finally, the capacitance

matrix C is given by 1

Cij =



Cg + 2CJ + CB, i = j

−CJ , i = j ± 1

−CB, i = j ±N

0, otherwise.

(5.2)

We obtain the Hamiltonian via Legendre transform and quantize it in the usual way by promoting

coordinates and conjugate momenta to operators that satisfy the commutation relations [eiϕj , nk] =

−eiϕjδj,k. This results in the circuit Hamiltonian

H =
2N∑

i,j=1

4(EC)ij(ni − ngi)(nj − ngj)−
2N∑′

j=1

EJ cos(ϕj+1 − ϕj − ϕext/2N), (5.3)

where we have introduced the charging-energy matrix (EC)ij = e2C−1
ij /2.

Obtaining the spectrum of Eq. (5.3) is challenging due to the large number of circuit degrees of

freedom. Exact diagonalization in the charge basis is feasible for N ≤ 3 in the relevant parameter

regime. For circuit sizes N > 3, memory requirements for storing the Hamiltonian in the charge

basis exceed 1 terabyte when using a charge cutoff of nc = 10 for each node. The predicted intrin-

sic protection from relaxation and dephasing, however, specifically requires circuits of large size

N ≫ 1 [52]. Therefore, a reduced effective model is needed for a numerical analysis of the circuit’s
1Indices i, j are interpreted modulo 2N .
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spectrum and coherence properties. Such an effective model can be obtained when focusing on

the concrete parameter regime affording decoherence protection identified by Kitaev, and is further

motivated by Ref. [108]. In this regime, the circuit is predicted to develop a robust ground-state de-

generacy, rendering the circuit insensitive to dephasing channels. Further, the two lowest-energy

eigenstates |0⟩ and |π⟩ should have nearly disjoint support in the multi-dimensional configuration

space defined by ϕ1, . . . , ϕ2N . As a consequence, all transition matrix elements ⟨0|O|π⟩ of local

operators O are exponentially suppressed, and the circuit is protected from transitions among the

computational basis states.

The protected parameter regime is established by a hierarchical ordering of energy scales.

First, the Josephson energy is required to be smaller than the junction charging energy, such that

Cooper-pair tunneling can be treated perturbatively. Second, the capacitances CB are expected to

be so large that the associated charging energy forms the smallest charging energy in the hierarchy.

The protected parameter regime is thus summarized by the conditions

N ≫ 1, EJ < ECJ
, ECB

< ECJ
< ECg , (5.4)

where ECa = e2/2Ca. If offset charges vanish and Josephson tunneling is neglected, the lowest-

energy excitations are Cooper-pair excitons (with charging energy ∼ ECB
) consisting of a Cooper

pair and a Cooper-pair hole [52, 108, 132], positioned across a big-capacitor rung, see Fig. 5.1

for an example. In exciton-hopping among adjacent rungs of the ladder, these two charges move

together and generate counter-propagating currents – hence the name “current mirror” [52]. We

call non-exciton charge excitations “agitons,” which incur significantly higher charging energies

proportional to ECJ
or ECg .2 The separation into a low-energy subspace including only exciton

excitations, and a high-energy subspace including agiton excitons is the key ingredient for the

development of the effective model to be described next.
2Note that in the presence of charge frustration, the nature of the low-energy excitations changes from Cooper-pair

excitons to Cooper-pair and void excitons [52, 108, 132]. We do not consider such effects here, however we remark
that in the presence of such charge frustration the overall behavior of the circuit is not expected to change [52].
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5.2 Effective model

The essential idea behind the effective model is to integrate out high-energy agiton excitations

in a perturbative treatment of the Cooper-pair tunneling. The tunneling of a single Cooper pair

converts an exciton into an agiton. Since the tunneling amplitude ∼ EJ is small compared to

the agiton charging energy ∼ ECJ
, ECg , such an agiton state will take on the role of a virtual

intermediate state before the exciton is restored via a second Cooper-pair tunneling step, see Fig.

5.2(a). We capture this physics by employing a Schrieffer-Wolff transformation [14, 133, 134, 135,

136, 137]. The interested reader can find in Appendix A a derivation of the general Schrieffer-

Wolff transformation along with associated Mathematica ® code for carrying out the analysis using

computer algebra.

The unperturbed Hamiltonian is composed of the charging energy terms

H0 =
2N∑

i,j=1

4(EC)ij(ni − ngi)(nj − ngj), (5.5)

while the perturbing Hamiltonian is composed of the Josephson tunneling contributions

V = −EJ

2

2N∑
j=1

ei(ϕj+1−ϕj)e−iϕext/2N + H.c. (5.6)

The unperturbed Hamiltonian H0 divides the Hilbert space into the low-energy subspace α that

includes the lowest-energy states, spanned exclusively by exciton-charge states and a subspace γ

that includes agiton charge states. The corresponding unperturbed eigenenergies and eigenstates

are denoted Ei,α, Ej,γ and |i, α⟩, |j, γ⟩. Cooper-pair tunneling acts as a perturbation V = Vd+Vod,

coupling the two manifolds via its block-off-diagonal component

Vod =
∑
i,j

|i, α⟩⟨i, α|HJ |j, γ⟩⟨j, γ|+ H.c.,
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Figure 5.2: (a) The tunneling of an exciton from one rung to the next: the Cooper-pair hole
tunnels to the right, followed by its partner Cooper pair (or vice versa). (b) Effect of exciton tunneling
among regular sites. (c) Exciton tunneling across the stitching point reverses the exciton sign, and
corresponds to exciton annihilation on both adjacent rungs.

and individual states within the agiton subspace via its block-diagonal part

Vd =
∑
j,j′

|j, γ⟩⟨j, γ|HJ |j′, γ⟩⟨j′, γ|.

(Matrix elements between states in the exciton subspace vanish.) Before explicitly carrying out the

Schrieffer-Wolff transformation, we first introduce the exciton and agiton variables that allow for

analytic expressions for the bare eigenenergies as well as a straightforward interpretation of the

effective Hamiltonian.

5.2.1 Exciton and agiton variables

We formalize the notion of excitons and agitons by introducing the respective variables

ϕ±j = ϕj ± ϕN+j , (5.7)
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where − and + correspond to exciton and agiton, respectively. We also correspondingly introduce

exciton and agiton charge-number operators

n±j =
nj ± nN+j

2
. (5.8)

Here, the variable index now ranges from j = 1, . . . , N . These definitions render commutators

among the new operators canonical, i.e.,

[eiϕ
σ
j , nτk] = −eiϕ

σ
j δjkδστ , σ, τ = ±. (5.9)

We note that quantum numbers of the exciton charge and agiton charge operators obey a simple

constraint: for each rung j the two charge quantum numbers must be either both integer, or both

half-integer. For instance, a single exciton on rung k corresponds to n−k = 1, n+k = 0. If, on the

other hand, rung k hosts a single Cooper pair on site k (no charge on site k + N ), then we have

n−k = −1/2 and n+k = −1/2. The subspace spanned exclusively by exciton states has quantum

numbers {n+j = 0} and integer-valued n−j .

In terms of exciton and agiton variables, the full circuit Hamiltonian is

H =
∑
σ=±

N∑
i,j=1

4
(
Eσ
C

)
i,j

(
nσi − nσgi

)(
nσj − nσgj

)
(5.10)

−
N−1∑
j=1

2EJ cos(12 [ϕ
+
j+1 − ϕ+j − ϕext

N ]) cos(12 [ϕ
−
j+1 − ϕ−j ])

− 2EJ cos(12 [ϕ
+
1 − ϕ+N − ϕext

N ]) cos(12 [ϕ
−
1 + ϕ−N ]),

where offset charges ngi have been transformed in a way analogous to Eq. (5.8). Note that the

potential energy, comprised of the terms in lines 2 and 3, is 4π-periodic in the ϕ±j variables. This

is a direct result of n±j taking on half-integer values. Following this coordinate transformation, the

charging energy matrix EC is brought into block-diagonal form by ordering variables according to
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ϕ−1 , . . . , ϕ
−
N , ϕ

+
1 , . . . , ϕ

+
N :

ẼC =

E−
C 0

0 E+
C

 . (5.11)

Analytical expressions for these exciton and agiton charging-energy matrices E−
C and E+

C are ob-

tained in Appendix B.

5.2.2 Exciton tunneling

The Schrieffer-Wolff transformation proceeds by constructing an effective Hamiltonian

Heff = PeSHe−SP, (5.12)

order-by-order in the small parameters. We have defined the projector onto the low-energy sub-

space P =
∑

i |i, α⟩⟨i, α|. The generator S of the unitary transformation is anti-Hermitian and purely

block off diagonal. Systematic construction of S and of the resulting low-energy Hamiltonian Heff

proceeds via expansion in V and iterative employment of the Baker-Campbell-Hausdorff relation,

see Appendix A. To second order, this yields the exciton-hopping terms

Heff,2 =
1

2
|i, α⟩⟨i, α|V |k, γ⟩⟨k, γ|V |j, α⟩⟨j, α|

(
1

Ei,α − Ek,γ
+

1

Ej,α − Ek,γ

)
, (5.13)

where here and in the following, summation over repeated Latin indices is implied. In this pertur-

bative path for exciton hopping, a single high-energy virtual state |k, γ⟩ is accessed. Calculation of

the energy denominators in Eq. (5.13) in principle depends on the states |i, α⟩ and |j, α⟩ and their

energies Ei,α and Ej,α, respectively. However, for N ≲ 20 the smallest charging-energy matrix

element of the agiton coordinates, E+
C N

2

, is much larger than the largest charging-energy matrix

element of the exciton coordinates, E−
C0. Therefore, we may neglect exciton charging energies in

the calculation of Eq. (5.13), leading to the simplified expression

Heff,2 = |i, α⟩⟨i, α|V |k, γ⟩ 1

−Ek,γ
⟨k, γ|V |j, α⟩⟨j, α|
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The virtual state |k, γ⟩ accessed depends on the initial state |j, α⟩. For instance, consider an exciton

tunneling from rung ℓ to rung ℓ + 1. The initial state is given by |{n+i = 0}, {n−i }⟩. There are two

possible virtual agiton states, namely

|a±⟩ = |n+ℓ = ∓1/2, n+ℓ+1=± 1/2, n−ℓ =nℓ − 1/2, n−ℓ+1=nℓ+1 + 1/2⟩ (5.14)

with energies E±
a that can be accessed. We thus find

Heff,2 =

2N∑′

ℓ=1

(
|i, α⟩⟨i, α|eiϕℓ+1e−iϕℓe−iϕext/2N |a−⟩ 1

−E−
a
⟨a− |e−iϕℓ+N+1eiϕℓ+N eiϕext/2N |j, α⟩⟨j, α|

+ |i, α⟩⟨i, α|e−iϕℓ+1eiϕℓeiϕext/2N |a+⟩ 1

−E+
a
⟨a+ |eiϕℓ+N+1e−iϕℓ+N e−iϕext/2N |j, α⟩⟨j, α|

)
. (5.15)

It is clear from inspection of Eq. (5.15) that the external flux drops out exactly. This indicates

weak sensitivity of the circuit to flux, which is only re-established by higher-order terms, as we will

demonstrate below.

When neglecting exciton energies as compared to agiton coordinates, the intermediate-state

energies become independent of the exciton quantum numbers

E±
a = 2∆E±

j = 2(E+
C0 − E+

C1)± 4
[
(E+

C )m,j − (E+
C )m,j+1

]
n+gm +O(E−

C0). (5.16)

Here, we have defined E+
C0 = (E+

C )j,j and E
+
C1 = (E+

C )j,j±1; see Appendix B for explicit expressions

of the charging-energy matrix elements (E+
C )j,k. This simplification allows for the sum over initial

states to be performed, yielding

Heff,2 =−
N−1∑
j=1

Jj cos(ϕ−j+1 − ϕ−j )− JN cos(ϕ−1 + ϕ−N ), (5.17)

where the identification eiϕ
−
j =

∑
n |n

−
j = n + 1⟩⟨n−j = n| has been used and terms merely in-

troducing energy renormalization of charging energies are omitted. The resulting exciton-hopping
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strengths are given by

Jj =
E2

J

4

(
1

∆E+
j

+
1

∆E−
j

)
. (5.18)

For vanishing agiton offset charges, n+gj = 0, the exciton-hopping strengths simplify to the uniform

expression

J =
E2

J

2E+
C0 − 2E+

C1
=

E2
J

2ECJ

+O
(
Cg

CJ
,
1

N

)
. (5.19)

The resulting effective Hamiltonian in the exciton subspace up to second order is

Heff =
N∑

i,j=1

4
(
E−
C

)
i,j

(
n−i − n−gi

)(
n−j − n−gj

)
(5.20)

−
N−1∑
j=1

Jj cos(ϕ−j+1 − ϕ−j )− JN cos(ϕ−1 + ϕ−N ).

The sign deviation in the final exciton hopping term of Eq. (5.20) occurs as a direct consequence

of the Möbius topology. Its origin can be understood with the help of Fig. 5.2, depicting the exciton

tunneling process across the twist point. Generally, exciton tunneling is understood as exciton

annihilation on one rung and creation on a neighboring rung, see Fig. 5.2(b). However, tunneling

across the twist point results in either exciton annihilation or exciton creation on both rungs, see

Fig. 5.2(c). We note that the specific location of the twist point is irrelevant to the physics, as

variables may be cyclically permuted.

Inspection of the charging energies for excitons, E−
C , shows that the charge-charge interaction is

relatively short-ranged for excitons in the protected regime. Using analytical results from Appendix

B, we find the asymptotic expressions

(
E−
C

)
j,j

=
e2

2CB
+O

(
CJ
CB
,
Cg

CB
, 1
N

)
, (5.21)(

E−
C

)
j,j+1

=
e2CJ

4C2
B

+O
(

CJ
CB
,
Cg

CB
, 1
N

)
,(

E−
C

)
1,N

= −e
2CJ

4C2
B

+O
(

CJ
CB
,
Cg

CB
, 1
N

)
.

All other off-diagonal elements are strongly suppressed in higher powers of CJ/CB.
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Integrating out the agiton degrees of freedom restores 2π-periodicity of the potential energy in

Eq. (5.20), a direct consequence of the elimination of half-integer eigenvalues of n−j in the exciton

subspace. Inspection reveals that the potential energy has the form of an N -dimensional double-

well potential, with minima located at {ϕ−j = 0} and {ϕ−j = π}. The values of the two potential

minima are identical, thus providing the basis for the (near-)degeneracy of ground and first excited

eigenstates of the current-mirror circuit, as envisioned by Kitaev [52]. This degeneracy is broken by

higher-order processes that carry net current around the circuit, or, equivalently, create or annihilate

an odd number of excitons. These processes are discussed below.

5.2.3 Degeneracy-breaking terms

The leading-order processes that lift the degeneracy among the two potential minima correspond

to the annihilation or creation of an odd number m of excitons (1 ≤ m ≤ N ), see Fig. 5.3. The cir-

cular circuit representation employed in that figure is topologically equivalent to the original Möbius

circuit, where it is understood that capacitive connections do not “touch” each other at the center.

In principle, constructing the effective Hamiltonian at N th order Heff,N requires calculation of the

generator to orderN−1, S =
∑n−1

n=1 Sn. In practice, expressions for the generators beyond second

order quickly become cumbersome. We sidestep this issue via proofs of the following statements,

which allow us to include in the effective Hamiltonian all of the leading-order processes contribut-

ing to degeneracy breaking. i) The creation or annihilation of an odd number of excitons leads to

degeneracy breaking. ii) Such processes require N -th order perturbation theory. iii) Leading-order

exciton creation and annihilation leads to sign alternation, i.e., neighboring Cooper-pair charges

alternate signs when moving around the circle, see Fig. 5.3. iv) Any process leading to the creation

of an odd number of excitons that does not obey sign alternation is of higher order, and is therefore

subdominant.

Proposition 1. Degeneracy between the two potential minima at {ϕ−j = 0} and {ϕ−j = π} is

broken by perturbative processes that create or annihilate an odd number of excitons. Perturbative

processes that leave the exciton number invariant or change it by an even number do not lead to
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Figure 5.3: Creation of an odd number of excitons in the current-mirror circuit, here in its equiv-
alent circular representation. Generation of a single exciton (m = 1) on rung j = 1 is achieved
by the operator e−iϕ−

1 . Likewise, m = 3 excitons with alternating signs are generated on rungs
j = 2, 3, N by the operator e−iϕ−

2 eiϕ
−
3 e−iϕ−

N . The figure shows the configurations obtained when
applying these operators to the charge-neutral circuit.

degeneracy breaking.

Proof. Consider a perturbative process creating or annihilatingm excitons at positions j1, . . . , jm ∈

{1, . . . , N} with exciton signs specified by s1, . . . , sm ∈ {−1,+1}. This process contributes a term

to the effective Hamiltonian with operator content

A =

m∏
k=1

e
iskϕ

−
jk + H.c. = 2 cos

 m∑
k=1

skϕ
−
jk

 . (5.22)

Addition ofA to the Hamiltonian amounts to a modification of the potential energy. For even exciton

numberm, the cosine argument is zero at {ϕ−j = 0} and an even integer multiple of π at {ϕ−j = π},

thus changing the two potential minima equally and leaving the degeneracy intact. By contrast,

for odd exciton number the cosine argument at {ϕ−j = π} is an odd integer multiple of π, thus

leading to an overall sign change between the potential-minima shifts at {ϕ−j = 0} and {ϕ−j = π},

effectively breaking the degeneracy.
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We will next prove two central statements. First, the leading order for creation or annihilation

of an odd number of excitons is order N (where N is the number of big capacitors in the circuit).

Second, every such N -th order process resulting in odd-number changes in exciton population

leads to charge alternation: a ‘+’ exciton is always followed by a ‘−’ exciton, so that when circling

the edge of the Möbius circuit, a Cooper-pair charge is always followed by a Cooper-pair hole, and

vice versa. An example of this is

A1 = e−iϕ−
2 e+iϕ−

3 e−iϕ−
N + H.c.

= e−iϕ2e+iϕ3e−iϕN eiϕN+2e−iϕN+3eiϕ2N + H.c.,

as shown in Fig. 5.3. The 3-exciton creation process described by B = eiϕ
−
1 eiϕ

−
3 eiϕ

−
7 +H.c., on the

other hand, does not obey charge alternation and is of order higher than N .

We first prove that odd-number exciton creation with charge alternation requires an N -th order

process. To assess the minimal order of the perturbative term for exciton creation, we note that the

process separates positive and negative charges and moves them in such a fashion to ultimately

recover an exciton configuration. Each step of moving a charge along the circuit circumference is

achieved by an operator from the perturbing Hamiltonian HJ , such as eiϕje−iϕj+1 , and increases

the order of the perturbative process by one.

Our proof showing that order N is the minimum required order relies on mapping our problem

to a special instance of the so-called assignment problem known from combinatorial optimization

[138, 139, 140], formulated as follows. Consider two ordered sets M = {m1,m2, · · · ,mn} and

P = {p1, p2, · · · , pn} which here denote the n positions of minus and plus charges on the circuit.

Each minus charge is generated by charge separation and increasing the relative difference to

some plus charge. The perturbative order of the creation process is thus ascertained by assigning

each minus charge to a plus charge and adding up their “spatial” separations. The order of a

process is equal to the cost C of a particular assignment, given by

C =
∑
i,j

C(mi, pj)Xij . (5.23)
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Here, assignments are recorded by the n×n permutation matrix X with Xij = 1 if mi is assigned

to pj ; otherwise, Xij = 0. Distance between positions on the circle is measured by

C(mi, pj) = min
[
(mi − pj) mod 2N, (pj −mi) mod 2N

]
. (5.24)

Determining the minimum perturbative order required to achieve the desired exciton creation thus

corresponds to finding the optimal assignment X which minimizes the cost C. We first show that

nearest-neighbor assignment on the circle for creation of an odd number of excitons obeying charge

alternation leads to a cost of N , and subsequently prove that this assignment is optimal. (Hence,

order N is the leading order for odd-number exciton creation.)

Proposition 2. For creation of an odd number of excitons obeying charge alternation, nearest-

neighbor assignment has cost N .

Proof. The proof proceeds by induction over the (odd) number m of excitons. For the base case

m = 1 (a single exciton trivially obeys charge alternation), there is only one Cooper-pair creation

operator and one annihilation operator. The two generated charges are nearest neighbors with

distance N , so the cost of the only possible assignment is N .

Next, assume that nearest-neighbor assignment indeed has a cost of N for m = n excitons

alternating in sign, and show that the same is true for m = n + 2 excitons. To do so, decompose

the creation operator An+2 for n+ 2 excitons into creation of n excitons,

An = e
−iϕ−

i1e
iϕ−

i2 · · · e−iϕ−
in (5.25)

= e−iϕi1eiϕi2 · · · e−iϕineiϕi1+N e−iϕi2+N · · · eiϕin+N ,

and creation of two additional excitons, see Fig. 5.4. (“H.c.” contributions are omitted from ex-

pressions to simplify notation.) For An, there are two different nearest-neighbor assignments with

equal cost N : either pairing up e−iϕi1 and eiϕi2 , or eiϕin+N and e−iϕi1 . To maintain sign alternation,
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Figure 5.4: (a) Nearest-neighbor assignment for an odd number n of excitons with alternating
signs. For odd n, the assignment of il+1 +N to il +N implies that the partner charges il+1 and il
are not assigned to each other (or vice versa). (b) Creation of n+2 excitons with alternating signs
is obtained from creation of n and inserting two nearest neighbor excitons with the appropriate
signs. The cost for nearest-neighbor assignment remains N .

the additional two excitons on rungs j1 and j2 must be nearest neighbors, and An+2 has the form

An+2 = e
−iϕ−

i1 · · · e−iϕ−
il e

+iϕ−
j1e

−iϕ−
j2e

+iϕ−
il+1 · · · e−iϕ−

in ,

where the insertion point is between il and il+1.

Without loss of generality, let us assume that for An, il +N and il+1 +N are paired. Since n is

odd, this implies that il and il+1 are not paired. Insertion of the two additional excitons then leads

to the nearest-neighbor assignment shown in Fig. 5.4(b). The new cost of this assignment can be

read off from the figure and is given by

N ′ = N − (il+1 +N − il −N) + (il+1 +N − j2 −N)

+ (j1 +N − il −N) + (j2 − j1) = N,

thus confirming that creation of n+ 2 excitons with alternating signs also carries cost N .

While nearest-neighbor assignment thus leads to a cost of N , it remains to be shown that N is
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the minimum possible cost. The situation is straightforward for the assignment problem on the line,

which is known to be solved by a greedy assignment, mi → pi [139]. The assignment problem on

the circle, which we face here, requires more thought, see Ref. [140]. Therein, Werman et al. show

that the circular assignment problem can be reduced to the linear one by identifying an appropriate

cutting point. Once this point is used for cutting the circle, linear greedy assignment minimizes the

cost. As a corollary to this general result, we can therefore state for our case:

Corollary 1. The optimal assignment for creation of an odd number of excitons with alternating

signs consists of nearest-neighbor assignment.

Proof. This follows from the work by Werman et al., and from the fact that greedy assignment for

charges with alternating signs results in nearest-neighbor assignment.

Note that the nearest-neighbor assignment for an odd number of excitons obeying charge al-

ternation leads to either a clockwise or a counter-clockwise assignment, i.e., all assignment arrows

pointing from minus charges to plus charges are oriented clockwise or oriented counter-clockwise.

A counter-clockwise assignment is shown in Fig. 5.4(b). Since the cost of both assignments is N ,

and we understand cost as order of perturbation theory, both contribute at N -th order.

Finally, we show that creation of an odd number of excitons not obeying sign alternation has

an optimal cost strictly larger than N . To facilitate the proof, we require some additional notation

borrowed from Ref. [140]. Given the ordered sets M = {mi} and P = {pi} for locations of minus

and plus charges, we define

Fm(x) =
∣∣{i : mi < x}

∣∣ ,
Fp(x) =

∣∣{i : pi < x}
∣∣ . (5.26)

Here, Fm(x) counts the number of minus charges between the origin and position x on the circle;

likewise Fp(x) does so for plus charges. The difference

F (x) = Fp(x)− Fm(x), (5.27)
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Figure 5.5: Visual aid for the proof of Lemma 1, showing that the point antipodal to F (x0) = max
must be a point where F = min.

quantifies the net positive charge between the origin and location x. F is a piecewise constant

function with discontinuities at charge locations. For an alternating charge configuration, F alter-

nates between either 0 and +1, or 0 and −1, such that f = maxx F (x) − minx′ F (x′) = 1. For

non-alternating charge configurations, f exceeds 1.

The following three lemmas prove instrumental in the proof that excitons with non-alternating

signs require a higher cost.

Lemma 1. Consider a configuration of an odd number of excitons on the circle and let x0 be a

position where F is maximal. Then the antipodal point x1 = x0 + N marks a position where F is

minimal.

Proof. The proof is by contradiction and aided visually by Fig. 5.5. Let F (x0) = a = max, and let

F (x1) = b at the antipodal point x1 = x0 +N . Now assume that there exists some other point y0

with x0 < y0 < x1 that yields an F even smaller: F (y) = c < b. (An analogous argument holds

for y0 > x1.) Then, the interval [x0, y0] contains a net negative charge c − a < 0. Let y1 = y0 +N

be the point antipodal to y0. Due to the exciton configuration of charges, the interval [x1, y1] must
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Figure 5.6: (a) Configuration of charges adjacent to points of maximal and minimal F . Arrows
show one of the possible scenarios of optimal assignments. (b) New charge configuration and
optimal assignment obtained after swapping the locations of the excitons from (a). The resulting
assignment has a cost strictly less than that in (a).

contain the net positive charge a− c > 0. As a result, we have

F (y1) = F (x1) + a− c = a+ (b− c) > a = F (x0),

in contradiction to the maximality of F (x0).

The following lemma states an important property of the points where F is maximal or minimal.

This property regards the assignment arrows (also called “arcs”) above these points:

Lemma 2. Consider an odd number of excitons not obeying sign alternation. In the optimal as-

signment obtained from the algorithm by Werman et al., points of maximal and minimal F must

have arcs above them.

For proof of this lemma the reader is referred to Ref. [140].

Lemma 3. Consider once more an odd number of excitons not obeying sign alternation and an-

tipodal points where F is maximal and minimal, see Fig. 5.6(a). Then the shaded region reached

from F = max traveling clockwise must contain net negative charge.
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Proof. First, note that the charges surrounding the points of maximum and minimum F must have

signs as indicated in Fig. 5.6(a). Since the overall exciton number is odd, the shaded region of

interest must contain an odd number of charges, so the net charge a in that region is odd. Further,

we have

Fmin = Fmax + a− 2 < Fmax.

From this, we conclude a < 2. We rule out a = 1, as this would imply f = Fmax − Fmin = 1 and

hence charge alternation. a = 0 is not possible since a is odd. Hence, we have a < 0, so the net

charge in the region of interest is negative.

These lemmas are now utilized in the proof of the following statement about non-alternating

exciton configurations.

Proposition 3. For configurations of an odd number of excitons not obeying sign alternation, the

cost of the optimal assignment is strictly larger than N .

Proof. The proof is by induction on f = maxx F (x) − minx′ F (x′), starting with the base case

f = 3. According to Lemma 3, the points of minimal and maximal F must have arcs overhead in

the optimal assignment. Since this assignment is obtained by greedy pairing, nested arcs cannot

occur. This leaves only two possibilities of optimal assignments for the charges adjacent to the

points with extremal F . The first is shown in Fig. 5.6(a), where the top two charges are assigned to

each other and the bottom ones have crossing arcs. The second possibility places crossing arcs

both on the top and bottom pair of charges. By contrast, direct pairing of both the top two charges

and the bottom two charges does not yield an optimal assignment as can be seen as follows.

Suppose the top two charges are paired. Lemma 3 asserts that the shaded region on the right of

Fig. 5.6(a) contains net negative charge. Since minimal cost is achieved by greedy assignment in

clockwise fashion, the plus charge on the bottom must be assigned to a negative charge in this

shaded region. The negative charge on the bottom must thus be assigned to a positive charge in

the shaded region on the left, leading to crossing arcs as shown in the figure.

We assume an optimal assignment of the type depicted in Fig. 5.6(a); the following arguments
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also carry over to the case of crossing arcs for both segments. Locate all positions where F = Fmax

and swap the positions of the two adjacent excitons. This changes the maximum and minimum

values of F to F ′
max = Fmax − 1 and F ′

min = Fmin + 1, and hence yields f ′ = f − 2. For f =

3, the charge swaps thus produce an exciton configuration with sign alternation. The resulting

assignment, shown in Fig. 5.6(b) has a cost strictly lower than the assignment in the non-alternating

case of Fig. 5.6(a), completing the proof for the base case of f = 3.

For the induction step, assume that any odd-number exciton configuration with f ≤ f0 has an

optimal-assignment cost strictly greater than N , and show that this is true as well for f = f0 + 2.

(Note that f can only take on odd-integer values for an odd number of excitons.) The argument

is analogous to that employed for the base case f = 3. Identifying locations of maximal F and

swapping the adjacent excitons, one finds a new configuration with a strictly lower cost and f ′ =

f − 2 = f0 > 1. By the inductive hypothesis, this has an optimal-assignment cost strictly larger

than N , and so the assertion is proven.

Based on these results wemay now construct theN th order addition to the effective Hamiltonian

capturing leading-order degeneracy breaking. We know that none of the virtual intermediate states

are in the low-energy subspace. This is because we have proved that for a state in the low-energy

subspace, a perturbative path yielding an odd number of excitons is of order at least N . If a state

in the low-energy subspace were an intermediate state, we could construct a perturbative path of

order strictly less than N that creates an odd number of excitons. Therefore we generally obtain

[137]

Heff,N =
1

2
|i, α⟩⟨i, α|

N−1∏
ℓ=1

(V |kℓ, γ⟩⟨kℓ, γ|)V |j, α⟩⟨j, α|

×

[
1∏N−1

ℓ=1 (Ei,α − Ekℓ,γ)
+

1∏N−1
ℓ=1 (Ej,α − Ekℓ,γ)

]
(5.28)

where V appears N times and there are N − 1 energy denominators representing the cost of

accessing virtual states from the agiton subspace. Noting that the only relevant terms are those

that create or annihilate an odd number of excitons and that obey sign alternation, this expression
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reduces to

Heff,N = −K cos
(
ϕext
2

) odd∑
m≤N

∑
i1<i2<···<im

cos
[ m∑

j=1

(−1)jϕ−ij

]
. (5.29)

Here, K is the amplitude for creation and annihilation of an odd number m of excitons with sign

alternation. The summation index m of the outer sum counts the number of created/annihilated

excitons, and runs over all odd integers in the range of 1 throughN . The inner sum accounts for all

possible positions ij of them excitons. Sign alternation of charges is reflected by the corresponding

prefactor in the cosine argument. We observe that the exciton-generating terms also re-establish

dependence of the spectrum on the external flux. Simple combinatorics reveals the number of

terms in the inner sum of Eq. (5.29) as follows. Given a number of exciton creation/annihilation

terms m, there are N −m choices of where to place the remaining empty rungs. Therefore there

are
(
N
m

)
terms in the inner sum of Eq. (5.29) for each m. Summing over all of these contributions

yields
∑odd

m≤N

(
N
m

)
= 2N−1 [141].

Given the various perturbative paths and corresponding energy denominators associated with

Eq. (5.28) and contributing to Eq. (5.29), it is not immediately clear that all amplitudes can be

approximated by the same constant K. While it is clear that K ∼ (EJ/2)
N , the computation and

approximation of energy denominators is more involved. To do so, we must track the high-energy

virtual states accessed in the perturbative paths.

We illustrate the procedure for the perturbative paths contributing to the creation of a single

exciton on rung 1, associated with the operator exp(iϕ−1 ). As discussed above, the relevant N -th

order perturbative paths involve either exclusively clockwise transfer of Cooper pairs, or exclusively

counter-clockwise transfer. The counter-clockwise contributions are summarized by

A =
1

2

(
EJ

2

)N

eiϕext/2
∑
p∈SN

|i, α⟩⟨i, α|

N−1∏
ℓ=1

eiϕp(ℓ)−iϕp(ℓ)+1 |kℓ, γ⟩⟨kℓ, γ|

 (5.30)

× eiϕp(N−1)−iϕp(N−1)+1 |j, α⟩⟨j, α|

×

[
1∏N−1

ℓ=1 (Ei,α − Ekℓ,γ)
+

1∏N−1
ℓ=1 (Ej,α − Ekℓ,γ)

]
,
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where the summation is over all permutations p(n) of the numbers 1 ≤ n ≤ N . An analogous

expression is obtained for clockwise perturbative paths.

The energy denominators in Eq. (5.30) are obtained by tracking the high-energy virtual states

accessed. The states involved in one virtual process generally differ from those in another, de-

pending on the permutation p(n). Because there areN ! such permutations, the difficulty of carrying

out this sum rapidly increases with N . As in the calculation of Eq. (5.13), we neglect exciton-

charging energies. This approximation leads to a critical simplification of the energy denominators

in Eq. (5.30); it allows us to sum over each permutation p(n)where the initial state is a circuit devoid

of charge, and to ignore exciton charging energies in the intermediate states as compared to agi-

ton energies. The sum in Eq. (5.30) and its clockwise counterpart can be carried out numerically,

yielding the expression K
2 cos(ϕext/2) exp(iϕ−1 ).

To confirm that K is the same for all terms in Eq. (5.29), consider the following. As de-

picted in Fig. 5.4, to obtain terms with operator content ei(ϕ
−
1 −ϕ−

q +ϕ−
r ) (r > q), we needed to sum

over terms from Eq. (5.28) of exactly the same form as Eq. (5.30). Here, however, permuta-

tions refer to the N integers [1 .. q − 1] ∪ [q + N .. r + N − 1] ∪ [r ..N ]. Forming the operator

ei(ϕ
−
1 −ϕ−

q +ϕ−
r ) can be related to the formation of eiϕ

−
1 by the following substitutions: ei(ϕq−ϕq+1) →

ei(ϕq+N−ϕq+N+1), · · · , ei(ϕr−1−ϕr) → ei(ϕr+N−1−ϕr+N ). To understand the implications of this substitu-

tion for the energy denominators, we examine the action of the involved operators on states in the

high-energy subspace. Observe that

ei(ϕq−ϕq+1)

∣∣∣∣∣ n−q = n1, n−q+1 = n2,

n+q = m1, n+q+1 = m2

〉
=

∣∣∣∣∣ n−q = n1 +
1
2 , n−q+1 = n2 − 1

2 ,

n+q = m1 +
1
2 , n+q+1 = m2 − 1

2

〉
, (5.31)

while

ei(ϕq+N−ϕq+N+1)

∣∣∣∣∣ n−q = n1, n−q+1 = n2,

n+q = m1, n+q+1 = m2

〉
=

∣∣∣∣∣ n−q = n1 − 1
2 , n−q+1 = n2 +

1
2 ,

n+q = m1 +
1
2 , n+q+1 = m2 − 1

2

〉
, (5.32)

where ni,mi ∈ Z. The crucial insight from this is that the action of the substituted sister operators
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yields states that have the same agiton charge numbers, and differ only in the exciton charge num-

bers. Because the term in Eq. (5.29) involving exp(i[ϕ−1 − ϕ−q + ϕ−r ]) is obtained via a substitution

of these sister operators in Eq. (5.30) relative to the term involving exp(iϕ−1 ), their energy de-

nominators will be identical in the approximation that the exciton charging energies are neglected.

Similarly, the operators representing the creation of 5, 7,. . . excitons that include the creation of

an exciton on the first rung must all have the same coefficient as exp(iϕ−1 ) by the same reason-

ing. For identical junction and ground capacitances, the rotational symmetry of the circuit is intact.

Therefore, the coefficient of exp(iϕ−j ) for j ̸= 1 must be the same as the coefficient of exp(iϕ−1 ).

Therefore all terms in Eq. (5.29) must have the same coefficient under the approximations made

here.

From numerics for the selected parameter set, we find that K has the functional form K(N) =

175 GHz × exp(−1.59N), quantifying the exponential suppression at large N . To establish an

analytical bound onK wemake one further approximation. Ignoring offset charge, we approximate

the charging energy of two unpaired charges anywhere on the circuit by 2∆E = 2E+
C0− 2E+

C1 (and

for four unpaired charges by 4∆E = 4E+
C0 − 4E+

C1, etc.), as opposed to the exact expression

2∆Ej,k = 2E+
C0−2(E+

C )j,k for a Cooper-pair hole on site j and Cooper pair on site k. This yields an

upper bound forK because (E+
C )j,j±n < E+

C1 < E+
C0 for n ≥ 2. By counting all paths and extracting

the approximate energy denominators, we find

K(N) ≤ 4

(
EJ

2

)N AN

(∆E)N−1
, (5.33)

where AN is observed to obey A2 = 1 and AN+1 = AN (2N − 1)/N . This recursion relation can be

solved using Pochhammer symbols, yielding

AN =
(1)2N−3

(2N − 4)!!(2N − 4)!
. (5.34)

Because there are 2N−1 degeneracy breaking terms in Eq. (5.29), the relevant bound is not on

K(N), but rather 2N−1K(N); if K(N) decreases slower than 1/2N−1, then a ground-state degen-
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eracy does not develop at large N . Using the large N expression AN ∼ 2N−2, we find

2N−1K(N) < EJ

(
2EJ

∆E

)N−1

. (5.35)

Therefore as long as 2EJ < ∆E, the degeneracy breaking terms disappear in the large-N limit.

The parameters used in this work yield the energy scales 2EJ = 38 GHz and ∆E > 60 GHz for

N ≥ 4, indicating that a ground state degeneracy should indeed develop.

The resulting full effective Hamiltonian, capturing both exciton tunneling and degeneracy break-

ing to leading order, is given by

Heff =

N∑
i,j=1

4
(
E−
C

)
i,j

(
n−i − ngi

)(
n−j − n−gj

)
(5.36)

−
N−1∑
j=1

J cos(ϕ−j+1 − ϕ−j )− J cos(ϕ−1 + ϕ−N )

−K cos(ϕext
2 )
∑odd

m≤N

∑
i1<···<im

cos
[∑m

j=1(−1)jϕ−ij

]
.

The degeneracy of the two potential minima located at {ϕ−j = 0} and {ϕ−j = π} is now weakly bro-

ken by Heff,N . In the parameter regime of interest, Heff,N is exponentially suppressed, and minima

remain near-degenerate. Additionally, the kinetic energy scale ECB
= 0.2 GHz is small compared

the barrier height J ≈ 2 GHz, leading to very little tunneling between the two minima. We thus

obtain localized, nearly degenerate states for the ground and first-excited states, corresponding to

the qubit manifold.

5.2.4 Linearization of the effective model

Low-energy excitations of the current-mirror circuit arise as harmonic excitations within the two

potential wells of the effective model. To make this statement quantitative, we extract the normal-

mode frequencies associated with the linearized version of the second-order effective Hamiltonian

(5.20). (Degeneracy-breaking terms proportional to K can be safely neglected in this context.)

The normal-mode analysis is conveniently performed in the Lagrangian picture, where Taylor
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expansion of the potential energy about the {ϕ−j = 0} and {ϕ−j = π} minima yields

L0,π
eff =

1

2

(
Φ0

2π

)2 N∑
i,j

ϕ̇−i (C−)i,jϕ̇
−
j +

N−1∑
j=1

J

2
(ϕ−j+1 − ϕ−j )

2 +
J

2
(ϕ−1 + ϕ−N )2. (5.37)

We seek normal-mode solutions of the form ϕ⃗− = ξ⃗ke
iωkt. As usual, plugging this ansatz into the

equation of motion yields the generalized eigenvalue problemMξ⃗k = ω2
kC−ξ⃗k for the normal-mode

amplitudes ξ⃗k and associated eigenfrequencies ωk. Here, M denotes the coefficient matrix for

the potential bilinear form. Inspection shows that M and the capacitance matrix C− are both real,

symmetric, and tridiagonal with additional corner elements. For this reason, they possess the same

system of orthonormal eigenvectors, Mξ⃗k = mkξ⃗k and C−ξ⃗k = ckξ⃗k, and the eigenfrequencies are

obtained from ω2
k = mk/ck with the result

ωk =
2π

Φ0

√
4J sin2

[
(2k − 1)π/2N

]
CB + Cg/2 + 2CJ sin2

[
(2k − 1)π/2N

]
=

2π

Φ0

√
4J

CB

∣∣∣∣sin (2k − 1)π

2N

∣∣∣∣+O
(

Cg

CB
, CJ
CB

)
. (5.38)

Normal-mode frequencies are generally four-fold degenerate due to two factors: first, the 0 and π

minima contribute equal sets of normal modes; second, one finds ωk = ωN−k+1 for all k ≤ ⌊N/2⌋.

(In the case of odd N , the highest normal-mode frequency ω(N+1)/2 is only two-fold degenerate,

while the rest remain four-fold degenerate.)

A key insight from Eq. (5.38) is that the eigenfrequencies of the lowest-lying modes scale with

1/N . Therefore, the circuit size of the current-mirror qubit should not be chosen too large, in

order to avoid unwanted thermal population of low-lying excited states. We will argue in Sec. 5.4

that there is indeed a trade-off between depolarization and dephasing times which have opposite

behavior as a function of circuit size N .



84

5.2.5 Nature of ground-state degeneracy in the full model

We have successfully confirmed the near-degeneracy of the lowest two eigenstates within the

effective model. It is instructive to revisit the origin of this degeneracy in the context of the full

circuit model [Eq. (5.3)]. We expect low-lying eigenstates to be related to theminima of the potential

energy U = −
∑2N

j=1EJ cos(ϕj+1 − ϕj − ϕext/2N). Finding its local extrema via ∇U = 0 leads to a

set of 2N modular equations,

ϕ1 − ϕ2N ≡ ϕ2 − ϕ1,

ϕj+1 − ϕj ≡ ϕj − ϕj−1, 2 ≤ j ≤ 2N − 1, (5.39)

ϕ2N − ϕ2N−1 ≡ ϕ1 − ϕ2N ,

where all congruences are modulo 2π. At the minima locations, phase differences between adja-

cent nodes are thus identical to some constant value ∆ϕ. It is convenient to make use of gauge

freedom and set ϕ1 = 0, to obtain ϕj = (j − 1)∆ϕ, where 1 ≤ j ≤ 2N − 1. Solving for ϕ2N yields

∆ϕ = πl/N with integer l denoting the number of phase windings or vortices. In summary, the

local potential minima are labeled by the integer vortex number l, and have coordinates

(ϕ⃗l)j =
πl

N
(j − 1), |l| < N

2
+
ϕext
2π

. (5.40)

As opposed to the effective-Hamiltonian potential with only two minima at 0 and π, one faces a

multitude of local minima in the full-circuit model. There is a simple correspondence between

minima in the two models, namely

ϕ⃗ = ϕ⃗l (l = even
odd ) ↔ {ϕ−j = 0

π}, (5.41)

i.e., minima with even (odd) vortex parity contribute to the effective-model minimum at 0 (π). In

particular, the ground-state wave function occupies even-l minima, l = 0,±2, . . ., while the nearly

degenerate first excited state occupies odd-l minima, l = ±1,±3, . . .
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Table 5.1: Circuit parameters in h·GHz used in the numerical analysis, consistent with the con-
ditions (5.4) for the protected regime.

ECB
ECJ

ECg EJ

0.2 100 200 19

Whether low-lying wave functions spanmultiple minima depends on whether tunneling between

these minima is significant. We thus examine the eigenvalues and eigenvectors of the effective-

mass tensor governing the tunneling dynamics, here given by the capacitance matrix C [Eq. (5.2)].

The eigenvectors of C are the real and imaginary parts of

(ζ⃗k)j = eiπjk/N/
√
2N (5.42)

with corresponding eigenvalues

γk = Cg + 4CJ sin2
(
πk

2N

)
+ [1− (−1)k]CB. (5.43)

Here, k ranges from 1 to 2N , and eigenvalues are generally two-fold degenerate (with the excep-

tions of non-degenerate k = N and k = 2N ).

From the eigenvalues we infer that the effective masses for even k involve only the small ca-

pacitances CJ and Cg (light effective mass), while odd-k eigenvalues involve the large capacitance

CB (heavy effective mass). At the same time, it is only along the directions of odd-k eigenvectors

that the values of ϕ−j variables change, since (ζ⃗k)j = −(ζ⃗k)j+N for odd k. Hence, tunneling be-

tween minima of different vortex parity is strongly suppressed, confirming the picture of low-lying

eigenstates having definite vortex parity.

5.3 Spectrum of the current mirror

The simplification achieved with the effective model makes the problem of finding the current-

mirror spectrum amenable to numerical diagonalization. The selected current-mirror parameters

are given in Tab. 5.1. This choice firmly places the system in the intended protected regime where
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the effective model is valid. We note that from the experimental perspective, achieving the small

junction capacitance necessary to realize a device with these parameters will likely be the biggest

challenge. We compute the eigenspectrum of the effective model as a function of circuit size

(number of big capacitors N ), as well as external flux Φext, using two separate techniques: exact

diagonalization and density matrix renormalization group (DMRG).

We first perform exact diagonalization in the exciton-number basis. We employ the simplest

truncation scheme by choosing an appropriate exciton-number cutoff nc for each rung, thus retain-

ing exciton-basis states −nc < n−j < nc. (We find that nc = 10 is sufficient for convergence in our

case.) This way, exact diagonalization is feasible up to circuit size N = 6, beyond which memory

requirements become excessively large 3.

To extend our numerical treatment to current-mirror circuits of sizes N > 6, we make use

of DMRG methods. These methods have been employed very successfully in simulating one-

dimensional quantum systems by an efficient Hilbert-space truncation that only retains largest-

weight eigenvectors of the system density matrix at each step in the algorithm [142, 143, 144].

A large class of many-body and spin systems intractable with exact diagonalization can be han-

dled with DMRG. In the context of superconducting circuits, DMRG has previously facilitated the

study of capacitively-coupled Josephson junction necklaces by Lee et al. [108]. Since memory ef-

ficiency and fast convergence of DMRG algorithms generally rely upon the short-ranged nature of

interactions [142], Lee and coworkers eliminated long-ranged capacitive interactions by neglecting

junction capacitances. They further applied open boundary conditions which are known to speed

up convergence [108, 142, 143, 144].

We proceed in a similar way for the current-mirror circuit, noting that capacitive interactions

between rung degrees of freedom are relatively short-ranged in the effective model, see Eqs. (B.8)-

(B.9). The long-range interactions produced by the degeneracy-breaking term HK are known to

be weak and do not impede the treatment. The effective Hamiltonian Heff (5.20) thus essentially

describes a one-dimensional exciton model with nearest-neighbor hopping suitable for the DMRG
3A truncation scheme using a global exciton-number cutoff will likely succeed in pushing exact diagonalization to

slightly larger system sizes, but was not our main interest here.
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Figure 5.7: DMRG results: six lowest eigenenergies of the current-mirror circuit as a function of
circuit size N (number of big capacitors), based on the effective Hamiltonian [Eq. (5.36)]. For N ≥
7, ground state and first excited state, |0⟩ and |π⟩, are the nearly degenerate, lowest eigenstates
localized in the 0 and π wells. Other eigenstates correspond to harmonic excitations within the
two wells, and are denoted |α, ωk;n⟩, where α = 0, π labels the well, k is the mode index [see
Eq. (5.38)], and n the number of harmonic excitations. m is placeholder for the degenerate modes
ω0 and ω1. The inset shows a schematic 2d projection of the potential energy with minima at 0 and
π. (Circuit parameters used: see Tab. 5.1.)

algorithm. The use of open boundary conditions, however, is not appropriate in our case, as the

Möbius topology of the current-mirror circuit is crucial for the ground-state degeneracy. We have

implemented DMRG for the effective-model Hamiltonian using the ITensor package developed by

Stoudenmire and White [145]. In the following, we present DMRG results for circuit sizes up to

N = 12. To assess the accuracy of DMRG spectra, we have compared against effective-model

spectra obtained with exact diagonalization up to 6 big capacitors. We find excellent agreement,

with relative deviations less than 2 × 10−6. (We have confirmed that even larger circuit sizes can

be tackled with DMRG, and the computational bottleneck is no longer memory but runtime.)

The current mirror has been predicted to exhibit ground-state degeneracy in the limit of largeN

[52]. For experimental realizations, it is a pertinent question what concrete circuit size is required
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to enter the protected regime. Results from our DMRG calculations shed new light on this issue.

Figure 5.7 shows the lowest six effective-model eigenenergies versus circuit size N , for vanishing

magnetic flux. We observe that ground and first excited states rapidly approach each other above

N = 6, consistent with the exponential suppression of the degeneracy-breaking terms. Labeling

of qubit states in Fig. 5.7 is guided by the linearized effective model: the two qubit states eventu-

ally becoming degenerate are denoted by |0⟩ and |π⟩ in reference to the corresponding potential

minima. Other low-lying eigenstates can be identified as harmonic excitations in the two wells with

excitation energies approximated by multiples of the mode frequencies from Eq. (5.38). A state in

the α well (0 or π) with n excitations in mode k is written as |α, ωk;n⟩.

For N = 3, the π well minimum is still significantly above the 0 well minimum, and the latter

hosts three eigenmodes with frequencies ω0 = ω1 < ω2. Coincidentally, we have approximately

ω2/ω0 ≈ 2, leading to the apparent near-degeneracy for the highest energy eigenstates shown at

N = 3. Only the lowest mode frequencies scale with 1/N , leading to the disappearance of states

involving ω2 from the low-energy spectrum above N = 3. At large N , the degeneracy-breaking

terms in Eq. (5.36) become exponentially small and the low-energy eigenstates are well described

as harmonic excitations in one of the two wells, where each well is itself a 2-dimensional harmonic

oscillator with two-fold degenerate mode frequencies.

We have further investigated the case of half-integer flux, ϕext = π, where degeneracy-breaking

terms in Eq. (5.20) vanish. Consistent with that, the ground state is nearly degenerate already at

N = 3. However, operation at this point produces a completely symmetric double-well potential,

thus leading to eigenstates that are symmetric and anti-symmetric superpositions of the localized

wave functions in each well. These qubit states are not protected from relaxation by disjoint-

support arguments, defeating one of the original purposes for considering the superconducting

current mirror as a qubit.

Our numerical results have quantified the circuit size required in order to enter the protected

parameter regime. For the parameters we have chosen, the qubit states become the lowest-

energy eigenstates of the circuit only for N ≥ 6. Below this, the degeneracy-breaking terms are

large enough to push the qubit state in the π well above the low-energy excitations in the 0 well.
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5.4 Coherence properties

We follow the formalism outlined in Ch. 2 to compute coherence properties of the current-mirror

qubit with respect to relevant noise channels. In the context of superconducting qubits, four main

noise channels λ are likely candidates to dominate decoherence rates: 1/f charge noise via offset-

charge variations on each node, 1/f critical-current noise of each junction, 1/f flux noise in the

magnetic flux penetrating the Möbius ring, and dielectric loss in the capacitors. The first three

channels generally contribute to pure dephasing, while all four are relevant for depolarization.

5.4.1 Pure dephasing

In Ch. 2 we calculated pure-dephasing rates assuming that the noise-power spectrum is well be-

haved at ω = 0. A more elaborate treatment is necessary to obtain the pure-dephasing rate in

the case of 1/f noise S(ω) = 2πA2
λ/|ω|. We proceed by closely following the analysis presented

in Ref. [79]. First we consider the first-order effects of the noise before returning to second-order

contributions. We insert the relation ⟨δλ(t)δλ(0)⟩ = 1
2π

∫∞
−∞ dωe−iωtS(ω) into Eq. (2.18) to obtain

⟨ρ0π⟩(t) = c0(0)c
∗
π(0) exp

[
− 1

4π}2
|∂λE0π|2

∫ t

0
dt′
∫ t

0
dt′′
∫ ∞

−∞
dωe−iω(t′−t′′)S(ω)

]
(5.44)

= c0(0)c
∗
π(0) exp

[
−
A2

λ

}2
|∂λE0π|2t2

∫ ∞

0
dω

sinc2(ωt/2)
ω

]
.

This integral diverges logarithmically as ω → 0. Thus to proceed we must institute a low-frequency

cutoff ωir for the lower-bound on the integral. This cutoff is typically chosen to satisfy t≪ ω−1
ir [75].

Carrying out the integral and expanding in powers of ωirt we obtain

⟨ρ0π⟩(t) ≈ c0(0)c
∗
π(0) exp

[
−
A2

λt
2

}2
|∂λE0π|2

(
1

2
{3− 2γ}+ ln 1

ωirt

)]
, (5.45)

where γ ≈ 0.58 is the Euler–Mascheroni constant. Typically the constant term is neglected, noting

that ωirt≪ 1. According to Eq. (5.45) the decay of the coherence is Gaussian, and by convention
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the dephasing time is then taken to be the variance

Γ
(1),λ
ϕ =

√
2A2

λ

}2
|∂λE0π|2| lnωirt|. (5.46)

If the first-order effects vanish due to operation at a sweet spot (such as ϕext = π), wemust calculate

the second-order effects. We thus return to Eq. (2.8) and noting that ∂λE0π = 0, obtain

cn(t) = cn(0) exp

[
− i

}
1

2
⟨n|∂2λHeff|n⟩

∫ t

0
dt′δλ2(t′)

]
. (5.47)

Proceeding in the same way as in Ch. 2, the decay of the coherence is given as

⟨ρ0π⟩(t) = c0(0)c
∗
π(0) exp

[
− 1

4}2
(
D

λ,(2)
0π

)2 ∫ t

0
dt1

∫ t

0
dt2⟨δλ2(t2 − t1)δλ

2(0)⟩

]
(5.48)

= c0(0)c
∗
π(0) exp

− 1

4}2
(
D

λ,(2)
0π

)2{
t2σ4 +

2t2

4π2

∫ ∞

−∞
dΩ

∫ ∞

−∞
dω sinc2

(
(Ω + ω)t

2

)
S(Ω)S(ω)

} ,
defining

D
λ,(n)
0π = ⟨0|∂nλHeff|0⟩ − ⟨1|∂nλHeff|1⟩, (5.49)

and where σ2 = ⟨δλ2(0)⟩ =
∫∞
−∞

dω
2πS(ω) is the total noise power. In the second line of Eq. (5.48)

we have used Isserlis’s theorem [146] to simplify ⟨δλ2(t2 − t1)δλ
2(0)⟩ = ⟨δλ2(0)⟩2 + 2⟨δλ(t2 −

t1)δλ(0)⟩. Additionally, we utilized the expression for the autocorrelation function in terms of the

noise spectral density ⟨δλ(t2 − t1)δλ(0)⟩ = 1
2π

∫∞
−∞ dω e−iω(t2−t1)S(ω). We insert the definition of

S(ω) into Eq. (5.48) and institute an ultra-violet cutoff ωuv, yielding

⟨ρ0π⟩(t) = c0(0)c
∗
π(0) exp

{
− 1

4}2
(
D

λ,(2)
0π

)2(
t2

[
2

∫ ωuv

ωir

A2
λ

ω
dω

]2
(5.50)

+ 8A4
λt

2

∫ ωuv

ωir

dΩ

∫ ωuv

ωir

dω sinc2
[
(Ω + ω)t

2

]
1

ωΩ

)}
.
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The integral on the top line of Eq. (5.50) is straightforward to carry out, while we extract the leading-

order logarithmic divergence of the integral on the bottom line as ωir → 0. The resulting pure-

dephasing rate is

Γ
(2),λ
ϕ =

√
2A4

}2
(
D

λ,(2)
0π

)2
[ln2(ωuv/ωir) + 2 ln2(ωirt)]. (5.51)

It is possible in some cases for the second-order effects to meaningfully contribute even when the

first-order effects do not vanish. In this case we can carry out the same analysis with minimal

modifications, obtaining the overall pure dephasing rate [79]

Γλ
ϕ =

√
2A2

λ

}2
(∂λE0π)

2 | lnωirt|+
2A4

λ

}2
(
D

λ,(2)
0π

)2 (
ln2 ωuv

ωir
+ 2 ln2 ωirt

)
. (5.52)

We make the common assumption that different noise channels are statistically independent [30,

75, 76, 77, 80, 147], and thus add individual decoherence rates and take the inverse to obtain the

overall pure-dephasing time

Tϕ =

∑
λ

Γλ
ϕ

−1

. (5.53)

To numerically evaluate Eq. (5.52) we use the frequency cutoffs ωuv/2π = 3.0GHz, ωir/2π = 1Hz

as well as the typical measurement time t = 10µs [147, 148, 149]. We use standard estimates

for the amplitude of charge noise Ang = 10−4e [150], critical-current noise AIc = 10−7Ic [151]

and flux noise AΦext = 1µΦ0 [148]. Derivatives of the Hamiltonian appearing in Eq. (5.52) are

calculated numerically using a five-point stencil, as analytical evaluation of derivatives is prevented

by the difficulty of obtaining a closed, analytical form for the degeneracy-breaking amplitudeK. For

charge noise and critical-current noise, the derivatives are performed by varying the noisy quantity

at a single site/junction, keeping all other offset charges/junction critical currents constant.

Figure 5.8 presents our numerical results for the pure-dephasing times of the current-mirror

qubit. We find that charge noise is the limiting factor for pure dephasing, which is not unexpected
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Figure 5.8: (a) Pure dephasing and depolarization times T λ
ϕ and T λ

1 , as a function of circuit size
N . Charge noise limits Tϕ, but dephasing times increase exponentially with N . Dielectric loss
limits T1, with escape from the qubit subspace dominating over relaxation. Due to the 1/N scaling
of low-energy excitations thermal excitations become more prominent with increasing circuit size.
This explains the observed decrease in T λ

1 as a function of N . (b) Total T1 and Tϕ as a function of
circuit size N .

given that the current mirror operates at EJ < ECJ
– a regime where offset-charge dependence is

relevant. Critical-current noise is subdominant, and dephasing due to flux noise is so insignificant

that its contributions are outside the range displayed in Fig. 5.8. Dephasing times overall improve

as a function of N because the relevant derivatives ∂K/∂ngj and ∂K/∂EJ are suppressed as

a function of N , as a direct consequence of the exponential suppression of K with N . (In fact,

operating the qubit at the sweet spot ϕext = π improves offset-charge and critical-current pure-

dephasing times by factors of ten or more. However, this operating point is not attractive since

protection from relaxation is lost.)

We predict dephasing times on the order of milliseconds for N as small as 10. We expect the

exponential decrease of K to persist for higher values of N , indicating that pure dephasing times

on the order of tens of milliseconds should be possible for N = 13, 14.

5.4.2 Depolarization

An important merit of the current-mirror qubit is its built-in protection from relaxation. Because of

the virtually disjoint support of the |0⟩ and |π⟩ wave functions, all matrix elements ⟨0|M |π⟩ with
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respect to local operatorsM are exponentially small. This implies that depolarization in the form of

escape upward to higher-energy eigenstates outside of the qubit subspace is the main contributor

to T1, as opposed to relaxation within the computational subspace.

In addition to the previously studied noise channels, we now also include dielectric loss which

is a known contributor to depolarization [94, 152]. The depolarization time T λ
1 = (Γλ

1)
−1 due to

channel λ is obtained by summing over individual depolarization rates [Eqs. (2.13)-(2.14)],

Γλ
1 = Γλ

rel + Γλ
exc + Γλ

esc, (5.54)

using Fermi’s golden rule. Here we explicitly include transitions to eigenstates outside of the qubit

manifold. For the 1/f noise sources, the analysis presented in Ch. 2 may be applied straightfor-

wardly. For dielectric loss, the situation is slightly modified. Following Refs. [94, 152], we model

dielectric loss as dissipation in the dielectric of each capacitor in the current mirror. The operator

that mediates transitions in Fermi’s golden rule is the charge stored on each capacitor [94]. To

find expressions for the charges on the big capacitors and the junction capacitors, we return to

the Lagrangian picture. The charge across the j-th junction is Φ0
2πCJ(ϕ̇j+1 − ϕ̇j). Similarly, the

charge across the j-th big capacitor is given by Φ0
2πCB(ϕ̇j+N − ϕ̇j). In order to evaluate matrix

elements, these expressions must be rewritten in terms of operators associated with the effective

Hamiltonian. The relation

ϕ̇−i =
N∑
j=1

8(E−
C )i,jn

−
j /} = 8ECB

n−i /}+O
(

CJ
CB

)
(5.55)

allows us to recast the capacitor charges in terms of exciton charge operators. The final ingredient

for predicting depolarization times due to dielectric loss in a capacitor with capacitance C is the

form of the noise power spectrum when the noise couples through the charge operator. This is

[94, 95]

Sdiel.(ω,C) + Sdiel.(−ω,C) =
2}

CQ(C)
coth }ω

2kBT
, (5.56)

where T is the temperature and Q(C) is the quality factor of the dielectric. We use values of
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Q(CJ) = 106 and Q(CB) = 107 as well as T = 15 mK [94, 95].

While the symmetrized noise power spectrum is useful for discussing relaxation, we are inter-

ested mainly in escape from the qubit subspace. These processes only involve the noise power

spectrum at negative frequencies, corresponding to absorption of energy from the environment.

Assuming the microscopic origin of the noise is a system in thermal equilibrium, the spectrum must

obey detailed balance, see Eq. (2.15). This allows us to solve for Sdiel.(−ω,C). If we additionally

assume the 1/f noise sources are in thermal equilibrium, then their respective noise-power spec-

tra are also suppressed at negative frequencies. Since low-energy excitations in the current mirror

scale as 1/N , we expect T1 to decrease as a function of N . Since Tϕ was observed to increase

with N , we expect there to be an optimal N for operating the current-mirror qubit where T1 and Tϕ

are of the same order of magnitude.

We present our results for the depolarization times of the qubit in Fig. 5.8. Dielectric loss is

the limiting factor for depolarization at all N , which is reasonable given that a circuit of size N by

definition has 2N junction capacitors andN big capacitors. 1/f charge noise is sub-dominant, and

contributions from 1/f critical-current noise and magnetic-flux noise to depolarization are safely

negligible. Our calculations yield depolarization times of multiple milliseconds, on-par with state-

of-the-art fluxonium qubits [33]. As seen in Fig. 5.8, past N = 11 the qubit ceases to be Tϕ limited

and becomes T1 limited.

We emphasize that escape from the qubit subspace is the dominant contributor to depolar-

ization, and relaxation within the qubit subspace is vastly suppressed. Such escape processes

are only relevant for transitions inside of each well, because of a similar suppression of matrix

elements between states in different wells. Interestingly, if the qubit degree of freedom could be

made insensitive to harmonic excitations and merely be linked to overall occupation in the 0 vs.

the π well, then T1 times would be dramatically longer than in our above estimates.
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6 Variational Tight Binding
This chapter is based on material published in D. K. Weiss et al., Phys. Rev. Research 3, 033244

(2021).

In the previous chapter we derived an effectivemodel for the current-mirror circuit and simulated

it using DMRG techniques. In so doing we extracted the spectrum and coherence times of the

device. Notably, the effective model cannot capture charge frustration. Thus, we are motivated to

simulate the full model of the current-mirror circuit to account for such effects. Unfortunately, naive

diagonalization in the charge basis with sparse matrices quickly fails due to memory requirements

as we will show below. Additionally we have attempted to simulate the full model of the circuit

using DMRG which was not successful due to the explosion of the bond dimension [109]. To make

progress in analyzing larger circuits, we require a qualitatively different approach than the ones

previously described.

Such an approach is provided by the tight-binding method introduced in Ch. 3. There, we

illustrated how tight binding is applied to superconducting circuits in general. Here, we focus on the

details of numerical implementation and the efficient computation of the relevant matrix elements.

We then apply the method to the examples of the flux qubit and the current mirror.

6.1 Efficient computation of matrix elements and overlaps

Solution of the generalized eigenvalue problem [Eq. (3.11)] involves the computation of matrix ele-

ments of harmonic-oscillator states at different locations and, possibly, with different normal-mode

orientations and oscillator lengths. The calculation of these quantities proceeds either via use of

ladder operators or by explicit integration within the position representation. Even though integra-
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tion can in principle be accomplished analytically, the expressions become increasingly tedious in

higher dimensions. (The integrals are generally two-center integrals that lead to two-variable Her-

mite polynomials [153]). By contrast, the ladder-operator formalism is more readily adapted for the

numerical calculations of the matrix elements in question. Therefore, we focus on this approach.

The matrix elements and overlaps to be evaluated have the form

⟨s⃗ ′,m′; 0⃗ |O|s⃗,m; j⃗ ⟩, (6.1)

where O is either the Hamiltonian H or the identity. To facilitate the use of the ladder-operator

formalism, we next re-express operators and states in terms of the creation and annihilation op-

erators associated with the m = 0 minimum in the central unit cell. Since inequivalent minima

differ in locations and curvatures, local wave functions are shifted and possibly squeezed relative

to each other,

T
θ⃗m

Sm|s⃗ ⟩ = |s⃗ ,m⟩, (6.2)

where |s⃗ ⟩ ≡ |s⃗, 0⟩ and we have taken the location of them = 0minimum to be the origin, θ⃗m=0 = 0⃗.

The intuitive interpretation of Eq. (6.2) is based on a two-step process: first the harmonic oscillator

states form = 0 are deformed via the squeezing operator Sm to match the local curvature of themth

minimum and are then shifted over to the appropriate location of that minimum via the translation

operator T
θ⃗m
. According to Eq. (6.2), the matrix elements take the form

⟨s⃗ ′,m′; 0⃗ |O|s⃗,m; j⃗ ⟩ = ⟨s⃗ ′|S†
m′T †

θ⃗m′
OT

θ⃗m+2πj⃗
Sm|s⃗ ⟩. (6.3)

The expression for the states is readily obtained,

|s⃗ ⟩ =
∏
µ

1√
sµ!

(a†µ)
sµ |s⃗ = 0⃗ ⟩, (6.4)

where we introduce the ladder operators aµ obeying the commutation relation [aµ, a
†
ν ] = δµν . Like-
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wise the treatment of the translation operator T
θ⃗
= e−iθ⃗·n⃗ is straightforward: making use of the

relation between the number operators and ladder operators

nj =
∑
µ

−i√
2
Ξ−T
jµ (aµ − a †

µ), (6.5)

the translation operator can be expressed as

T
θ⃗
= exp(− 1√

2
θ⃗ T Ξ−T [⃗a− a⃗†]), (6.6)

which translates the position variables ϕ⃗ by θ⃗. Here we use the compact notation a⃗ = (a1, · · · , aNd
)T

and a⃗† = (a1
†, · · · , aNd

†)T and denote Ξ−T = (Ξ−1)T .

The expression for the squeezing operator can be found by considering a simplified situation

of two harmonic Hamiltonians Ha,Hc of the form of Eq. (3.3), but defined at the same center point.

The Hamiltonian Ha is diagonalized by the ladder operators a⃗, a⃗† and Hc is diagonalized by c⃗, c⃗†.

The respective eigenfunctions |s⃗ ⟩a and |s⃗ ⟩c are related by a unitary squeezing transformation,

S|s⃗ ⟩a = |s⃗ ⟩c, (6.7)

which is equivalent to Sa⃗S† = c⃗. To obtain a concrete expression for S we note that the bosonic

ladder operators are related by a Bogoliubov transformation [154, 155, 156]

 u v

v∗ u∗


 a⃗

a⃗†

 =

 c⃗

c⃗†

 , (6.8)

where u, v are Nd × Nd matrices. These can be found by considering the two decompositions of
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the phase and number operators in terms of the differing sets of ladder operators

ϕ⃗
n⃗

 =
1√
2

 Ξ Ξ

−iΞ−T iΞ−T


 a⃗

a⃗†

 (6.9)

=
1√
2

 Ξ′ Ξ′

−iΞ′−T iΞ′−T


 c⃗

c⃗†

 ,

where the matrix Ξ is defined for Ha and Ξ′ for Hc as in Sec. 3.1. Solving Eq. (6.9) for the ladder

operators c⃗, c⃗† yields the real-valued Bogoliubov matrices

u =
1

2

(
Ξ′−1Ξ + Ξ′TΞ−T

)
, (6.10)

v =
1

2

(
Ξ′−1Ξ− Ξ′TΞ−T

)
(6.11)

As shown in Ref. [157], the multimode squeezing operator can now be expressed in terms of u, v

as follows:

S = exp
(
1

2
(⃗a T a⃗†

T
)J lnM (⃗a a⃗†)T

)
, (6.12)

where

M =

u v

v u

 , J =

 0 1

−1 0

 . (6.13)

Returning now to our original notation, we identify Sm with S in Eq. (6.12), where the m depen-

dence carries forward to the Bogoliubov u, v matrices. With Eqs. (6.4),(6.6),(6.12) we have, in

principle, collected all ingredients necessary for the evaluation of the matrix elements and over-

laps [Eq. (6.3)]. However, numerical implementation necessarily involves truncation, and we will

show in the following that normal-ordering operator expressions is essential for maximizing accu-

racy.

A standard approach for truncating the infinite-dimensional operators aµ, a†µ consists of exci-
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tation cutoffs smax applied to each individual mode. This is a fine strategy for moderate sized

systems, but quickly becomes intractable for larger systems due to the exponential growth of the

Hilbert-space dimension dindv = (M + 1)(smax + 1)Nd , where we recall that M corresponds to

the number of minima. To mitigate this bottleneck, one can instead use a global excitation num-

ber cutoff Σmax, which institutes a maximum Manhattan length of the excitation number vector,

∥s⃗ ∥1 ≤ Σmax [158]. The Hilbert-space dimension can be found using the “hockey-stick identity” to

be

dglobal = (M + 1)

Σmax +Nd

Nd

 . (6.14)

While dglobal still grows exponentially, the prefactor of the exponential growth is smaller than that

associated with dindv. For example, if we considerM = 0 (a single minimum) smax = Σmax = 3 and

Nd = 5, we obtain dindv = 1, 024 and dglobal = 56.

Given a specific truncation level, it makes a difference whether operator expressions are normal

ordered or not. Denoting the truncated operators as ãµ, ã†µ, the nominally identical expressions

ãµã
†
µ and ã†µãµ + δµµ in fact give different results as seen, for instance, in

⟨smax|ãµã†µ|smax⟩ = 0, (6.15)

⟨smax|(ã†µãµ + δµµ)|smax⟩ = smax + 1.

Here, the “wrong” result of the first expression can be circumvented by using the normal-ordered

version in the second expression. This example is indicative of a general result, that it is beneficial

to normal order ladder-operator expressions before further numerical evaluation.

In the following sections where we apply the tight-binding method to several example systems,

we find that the sets of basis states constructed with or without squeezing (proper vs. improper tight

binding) may yield similar numerical performance. This is naturally the case if minima contributing

to the low-energy spectrum have similar curvatures, or if all amplitude of the lowest-energy states is

concentrated in them = 0minimum. Whenever possible, omitting squeezing from the construction
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of basis states significantly simplifies the numerical treatment.

6.1.1 Normal ordering

The translation operator T
θ⃗
can be normal ordered via the the Baker-Campbell-Hausdorff (BCH)

formula [127, 128, 129, 130], which takes the form eXeY = eX+Y+ 1
2
[X,Y ] when X and Y are

operators that commute with their commutator [X,Y ]. This yields

T
θ⃗
=V†

θ⃗
V−θ⃗

exp
(
−1

4
θ⃗ TΞ−TΞ−1θ⃗

)
, (6.16)

where

V
θ⃗
= exp

(
1√
2
θ⃗ TΞ−T a⃗

)
. (6.17)

Expressions for commuting V operators past operators such as nj and eiϕj (which enter O in

Eq. (6.1)) can be easily obtained:

V
θ⃗
n⃗ =

(
n⃗+

i

2
Ξ−TΞ−1θ⃗

)
V
θ⃗
, (6.18)

V
θ⃗
eiϕj = ei(ϕj+

1
2
θj)V

θ⃗
, (6.19)

where in Eq. (6.18) we have used the identity [66] eXY = (Y + [X,Y ])eX , again valid when X and

Y commute with [X,Y ].

The normal-ordering procedure for expressions involving the squeezing operators is more in-

volved. In general, we must normal order operator expressions

S†
m′T †

θ⃗m′
OT

θ⃗m+2πj⃗
Sm (6.20)

prior to numerical evaluation. Normal ordering of the squeezing operator Sm [Eq. (6.12)] proceeds
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by first placing Sm in so-called disentangled form [157, 159]

Sm = exp
(
−1

2
TrY

)
exp

(
−1

2
a†µXµνa

†
ν

)
exp

(
−a†µYµνaν

)
exp

(
1

2
aµZµνaν

)
, (6.21)

where X = u−1v, Y = lnu, Z = vu−1 and we omit the m dependence of these quantities for

notational simplicity [154]. The inner term of Eq. (6.21) with Y is not yet normal ordered. This can

be rectified via the formula [160]

exp(a†µYµνaν) = : exp(a†µ(eY − 1)µνaν) :, (6.22)

where : : is known as the normal-ordering symbol. Creation and annihilation operators inside the

normal-ordering symbol can be commuted without making use of the commutation relations. A

trivial example of the use of this superoperator is : aa† : = a†a.

To commute exponentials and V operators appearing for example in Eq. (6.21) and Eq. (6.17)

we make use of the following normal-ordering formulae [161, 162]

exp(aµZµνaν) exp(a†µXµνa
†
ν) =

1√
det(1− 4ZX)

exp(a†µ[(1− 4XZ)−1X]µνa
†
ν) (6.23)

× exp(a†µ[ln(1− 4XZ)−1]µνaν) exp(aµ[(1− 4ZX)−1Z]µνaν),

exp(a†µYµνaν) exp(a†µY ′
µνaν) = exp(a†µ ln(eY eY

′
)µνaν), (6.24)

exp(aµZµνaν) exp(λµa†µ) = exp(λµZµνλν) exp(λµa†µ) (6.25)

× exp(aµZµνaν) exp(λµ(Zµν + ZT
µν)aν),

exp(a†µYµνaν) exp(λµa†µ) = exp(a†µ(eY )µνλν) exp(a†µYµνaν), (6.26)

exp(a†µYµνaν) exp(a†µXµνa
†
ν) = exp(a†µ(eY )µνXνσ(e

Y )Tστa
†
τ ) exp(a†µYµνaν). (6.27)

Here, X,Y, Y ′, Z and λ⃗ are arbitrary, except for the requirement of 1 − 4XZ and 1 − 4ZX to be

nonsingular in Eq. (6.23). We note that it is relatively straightforward to obtain Eqs. (6.25)-(6.27)

from standard applications of the BCH formula [66]. Obtaining Eqs. (6.23)-(6.24) is slightly more

difficult, and requires using either Lie algebra techniques [161, 163] or the so-called integration
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within ordered products (IWOP) procedure [162].

An instance of Eq. (6.20) relevant for computing wave function overlaps is

S†
m′ exp(λ⃗T a⃗†) exp(−λ⃗T a⃗)Sm, (6.28)

identifying

λ⃗ =
1√
2
(θ⃗m − θ⃗m′ + 2πj⃗)TΞ−T , (6.29)

and neglecting the overall multiplicative factor [c.f. Eq. (6.16)]. To simplify notation, we have

suppressed the dependence of λ⃗ on m,m′ and j⃗. We will continue to likewise suppress the m

dependence of the various matrices and distinguish between Xm and Xm′ by using the notation

X and X ′, etc. Applying each of the relations Eq. (6.23)-(6.27) in a few steps of algebra leads to

the normal-ordered result

S†
m′ exp(λ⃗T a⃗†) exp(−λ⃗T a⃗)Sm =

exp(−1
2 [λ⃗

T {X + (1+X)P TX ′(1+X)}λ⃗+ TrY ′† + TrY ])√
det(1−X ′X)

× exp(−1

2
a⃗†

T
[{e−Y ′}†PX{e−Y ′}∗ − Z ′]a⃗†) (6.30)

× exp(λ⃗T [1+X]P T [e−Y ′
]∗a⃗†)

× : exp(a⃗†
T
[e−Y ′†

Pe−Y − 1]⃗a) :

× exp(−λ⃗T [1+ {1+X}P TX ′]e−Y a⃗)

× exp(1
2
a⃗T [Z − {e−Y }TP TX ′e−Y ]⃗a),

where P = (1 −XX ′)−1, P TX ′ = 1
2(P

TX ′ +X ′P ) and the matrices X,X ′, etc. can be taken to

be symmetric. Similar expressions can be obtained when the operator O is an explicit function of

the ladder operators a⃗, a⃗†.
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6.1.2 Nearest-neighbor computation

The final step in setting up the generalized eigenvalue problem (3.11), is truncating the sum over

vectors j⃗. A typical truncation scheme is the nearest-neighbor approximation which selects only

those unit cells that have the minimal Euclidean distance from the central unit cell. This strategy

however does not account for any anisotropy in the harmonic lengths, which results in local wave

functions whose Gaussian tails extend further in some directions than in others. We therefore use

a different criterion based on the overlap of local wave functions. Whether the unit cell centered

at 2πj⃗ is a nearest neighbor to the central unit cell now generally depends on the minima under

consideration. Specifically, given a minimum m′ in the central unit cell, and a minimum m in the

unit cell at vector 2πj⃗, we determine the nearest-neighbor character by computing the overlap of

the two harmonic oscillator ground-state wave functions. For a given overlap threshold value ε, we

call the two unit cells nearest neighbors with respect to m and m′ if

⟨⃗0,m′; 0⃗|⃗0,m; j⃗ ⟩ =

√
2Nd det(∆m)1/2 det(∆m′)1/2

det(∆m +∆m′)
exp

[
−1

2
δ⃗θ

T
(∆−1

m +∆−1
m′ )

−1δ⃗θ

]
> ε. (6.31)

Here, we have defined δ⃗θ = 2πj⃗ + θ⃗m − θ⃗m′ and ∆m = Ξ−T
m Ξ−1

m , where Ξm is defined relative to

minimum m. With this definition in place, we truncate the sum over j⃗ by selecting neighbors up to

a certain degree. (Note that the overlap threshold ϵmust ultimately be adjusted adaptively in order

to ensure convergence.)

6.1.3 Singular inner products

A possible challenge for the numerical treatment, which we have observed in several cases, is that

the overlap matrix ⟨ψn⃗g ,s⃗ ′,m′ |ψn⃗g ,s⃗,m⟩may approach singularity (and possibly become indefinite due

to rounding errors). This is a familiar problem in quantum chemistry calculations [164, 165] and

arises when the set of “basis” states {|ψ1⟩, |ψ2⟩, . . . , |ψh⟩} is approximately linearly dependent. A

common technique for resolving this issue which we have implemented here is the canonical or-

thogonalization procedure of Löwdin [166, 167, 168]. One diagonalizes the inner product matrix to
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obtain the eigenvalues {∆1,∆2, . . . ,∆h} and matrix of column eigenvectors U . The orthonormal-

ized states are [166, 167, 168]

|ψ′
k⟩ = ∆

−1/2
k

∑
ℓ

|ψℓ⟩Uℓk. (6.32)

Choosing a cutoff ∆min allows for the rejection of states |ψ′
k⟩ where ∆k < ∆min. The Hamiltonian

H is then projected onto the deflated basis and we are left with a standard eigenvalue problem.

6.1.4 Optimization and anharmonicity correction of the ansatz wave functions

One of the main goals of this chapter is the construction of basis states that closely approximate

the low-energy eigenstates of superconducting circuits. We can optimize the tight-binding wave

functions (3.7) for this purpose by recognizing that sufficiently far from each minimum location,

the potential ceases to be strictly harmonic. The low-energy eigenfunctions typically have spatial

spreads that are broader if the leading-order anharmonic term is negative and narrower if it is

positive. We take this effect into account and improve the tight-binding wave functions by treating

the harmonic length of each mode as a variational parameter. Specifically, we modify the matrix

Ξ by optimizing the magnitude of the eigenvectors ξ⃗µ, leaving the directions unchanged, ξ⃗µ →

λµξ⃗µ, where λµ is optimized. We perform this optimization procedure for the ansatz ground state

|ψn⃗g ,⃗0,m
(λµ)⟩, making the dependence on λµ explicit, minimizing

E =
⟨ψn⃗g ,⃗0,m

(λµ)|H|ψn⃗g ,⃗0,m
(λµ)⟩

⟨ψn⃗g ,⃗0,m
(λµ)|ψn⃗g ,⃗0,m

(λµ)⟩
. (6.33)

The resulting harmonic lengths are then used for all other states defined in the same minimum

m.1 We term this optimization scheme “anharmonicity correction,” which combined with improper

and proper tight binding leads to additional choices for constructing tight-binding states: (IPAC)

improper with anharmonic correction and (PAC) proper with anharmonic correction of the m = 0

minimum. Recall that the improper scheme calls for the construction of states based only on the
1Alternatively, one could optimize the harmonic lengths of a higher-lying basis state [123], which is a possible avenue

for future research.
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(a) improper (b) proper

(c) improper 
      + anharm. correction

(d) proper 
      + anharm. correction

Figure 6.1: Schematic of ansatz construction schemes. (a) Improper, where local wave functions
are defined according to the curvature of them = 0minimum and are reused to form the local wave
functions of other inequivalent minima. (b) Proper, where local wave functions for every minimum
are defined according to the local curvature. (c) Improper with anharmonicity correction, where
harmonic length(s) of the ansatz ground-state wave function of the m = 0 minimum are optimized
to account for anharmonicity corrections to the potential. The resulting wave functions are then also
used for m ̸= 0 minima as in (a). The dashed lines show the unoptimized local ground state wave
function defined for the m = 0 minimum (the change in the harmonic length due to anharmonicity
corrections has been exaggerated). (d) Proper with anharmonicity correction of only the m = 0
minimum. Wave functions for the m = 0 minimum are defined according to the local curvature
and anharmonicity correction scheme, while wave functions for m ̸= 0 minima are defined only
according to the local curvature.

curvature of the m = 0 minimum, while the proper scheme constructs states in each minimum

according to the local curvature. Therefore IPAC uses anharmonicity correction of the m = 0

minimum and applies the resulting states to all minima, while PAC applies anharmonicity correction

only to the m = 0 minimum, and uses uncorrected states in m ̸= 0 minima, see Fig. 6.1.

We could further envision the construction of states according to: proper with anharmonicity

correction of all minima. However, in the cases considered here, this scheme frequently encounters

numerical stability issues far in excess of those of the previously discussed schemes, with no

benefit in terms of spectral convergence. In many cases this issue is due to states in m ̸= 0

minima being optimized with excessively large harmonic lengths, leading to large wave function

overlap and hence numerical instability. Resolution of this problem is an interesting open question,
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as the proper scheme with anharmonicity correction of all minima could perhaps be useful when

applied to other systems.

6.1.5 Applicability of tight binding

A natural question to ask is whether the tight-binding method is appropriate for obtaining the eigen-

spectrum of a given superconducting circuit. A general and systematic answer to this question is

difficult to obtain and we do not aim to give a comprehensive answer here. Instead we seek to

motivate a “rule-of-thumb” criteria that serves as an indicator of whether the tight-binding method

can produce meaningful results.

If the spatial spread of the localized harmonic-oscillator states [eigenfunctions of Eq. (3.6)] is

small compared to distances between minima then the tight-binding approach is physically well

motivated and we expect tight-binding wave functions to serve as good approximations to low-

energy eigenstates. If, on the other hand, the wave functions have large spatial spread and sig-

nificant overlap, then the weak-periodic-potential approximation is more appropriate for describing

the low-energy excitations.

To quantify this discussion, we define length scales to compare the spatial spread of wave

functions with the distance between minima. Examining the exponential dependence

exp(−1

2
ϕ⃗TΞ−TΞ−1ϕ⃗)

of the local harmonic wave functions, we can extract the effective harmonic length ℓmm′ along the

unit vector ûmm′ separating two minima m and m′

ℓmm′ ≡ (ûTmm′Ξ−TΞ−1ûmm′)−1/2. (6.34)

It is natural to compare ℓmm′ to dmm′/2, half the distance between the minima. Our rule-of-thumb
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for application of the tight-binding method is based on the largeness of the localization ratios

rmm′ =
dmm′/2

ℓmm′
, (6.35)

compared to unity. This provides a rough threshold for judging whether the tight-binding method

might be appropriate.

6.2 Tight binding applied to the flux qubit

In order to evaluate the accuracy of the tight-binding method, we first apply it to the familiar case

of the three-junction flux qubit. The spectrum of the flux qubit is well understood [114, 169], but

applying the method in this context is of interest and nontrivial because the flux qubit has multiple

degrees of freedom and multiple inequivalent minima in the central unit cell. Additionally, the flux

qubit is typically operated in a parameter regime where tight-binding techniques are applicable.

Indeed, many authors have used tight-binding techniques to get analytical estimates of tunneling

rates and low-energy eigenvalues [114, 115, 116]. We extend this previous research by using

multiple tight-binding basis states in each inequivalent minimum to obtain improved low-energy

eigenvalue estimates.

We consider the case where two of the junctions are identical with junction energy EJ and

capacitance CJ , while the third has junction energy and capacitance reduced by a factor of α. The

Hamiltonian is [114]

Hflux =
2∑

i,j=1

(ni − ngi)4(EC)ij(nj − ngj)− EJ cos(ϕ1)− EJ cos(ϕ2) (6.36)

− αEJ cos(ϕ1 − ϕ2 + ϕext) + EJ(2 + α),

where ϕext = 2πΦext/Φ0, Φ0 = h/2e is the flux quantum, EC = e2

2 C
−1 is the charging energy matrix

and the constant term is included to ensure that the spectrum of Hflux is positive. The capacitance
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Figure 6.2: Spectrum of the flux qubit as a function of (a) flux and (b) offset charge ng1, calculated
using charge-basis diagonalization (solid) and improper tight binding (dashed). At themagnification
level of the two figures, the spectra almost exactly overlap. Below each spectrum is the absolute
error of the tight-binding calculation relative to the exact spectrum for each of the four lowest-energy
eigenstates. Sub-MHz level agreement is achieved in all cases considered here with Σmax = 5,
and sub-kHz level absolute error is possible for both parameter sets by increasing Σmax. For (a)
flux modulation, we choose parameters EJ/h = 1 GHz, EJ/ECJ

= 60, ECg/ECJ
= 50, α = 0.8 and

ngi = 0 [169]. For (b) tuning ng1, we use parameters EJ/h = 1 GHz, EJ/ECJ
= 5, ECg/ECJ

=
50, α = 0.8 and have set ng2 = 0, ϕext = 0.5.

matrix C is

C =

CJ(1 + α) + Cg −αCJ

−αCJ CJ(1 + α) + Cg

 , (6.37)

where Cg is the capacitance to ground of each island. (See Refs. [114, 169] for details on the

derivation of Eq. (6.36)).

In order to demonstrate quantitative accuracy of the tight-binding method, we calculate the

flux and offset-charge dependence of the spectrum, see Fig. 6.2. For the parameters considered,

the localization ratios are large compared with unity, indicating that the parameter regimes are

amenable to tight binding. Figs. 6.2(a-b) show the spectrum as a function of flux and offset charge,
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respectively, with improper-tight-binding results overlaying the exact spectrum obtained via charge-

basis diagonalization. While the spectra from the two different methods are indistinguishable in the

upper panels of Figs. 6.2(a-b), we explicitly visualize the residuals for the four lowest eigenenergies

in the lower panels of Figs. 6.2(a-b). For Σmax = 5, the residuals are all below 1 MHz for flux

and offset-charge variation. Further suppression of the absolute error below 1 kHz is possible by

increasing the global excitation number cutoff to Σmax = 10.

Even for relatively greedy cutoffs of the global excitation number Σmax, the improper-tight-

bindingmethod can provide accurate estimates of the eigenspectrum. To compare results obtained

using tight-binding methods with results from exact diagonalization, we compute the relative devi-

ation from the exact low-energy spectrum, averaged over the four lowest-energy eigenvalues

ηavg =
1

4

3∑
i=0

Ei − ϵi
ϵi

. (6.38)

Here, ϵi is the exact eigenenergy of the state indexed by i and Ei is the approximate eigenenergy.

We also define the minimum and maximum relative deviations

ηmin = min
i=0,...,3

(
Ei − ϵi
ϵi

)
,

with ηmax defined similarly. To monitor convergence and assess the memory requirements for

reaching a desired accuracy, we plot in Fig. 6.3 ηavg as a function of nonzero Hamiltonian matrix

elements (nH ). We use nH rather than Hilbert-space dimension as a proxy for memory usage to

account for the different cases of sparse vs. densematrix numerics encountered for diagonalization

in the charge basis vs. tight binding. For a cutoff as greedy as Σmax = 1, corresponding to nH = 36,

we find ηavg < 7 · 10−3 using improper tight binding. Note that for the flux qubit in the parameter

regimes considered here, neither the proper-tight-binding technique nor anharmonicity correction

provided any appreciable benefit in terms of convergence to the spectrum over improper tight

binding.

To benchmark convergence of the tight-binding method, we compare against results obtained
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Figure 6.3: Comparison of convergence to the exact low-energy flux qubit spectrum between
improper tight binding (blue circle, solid line) and approximate diagonalization in the charge basis
(green circle, dashed line) as a function of nH . The colored circles represent the average relative
deviation ηavg, while the colored lines are merely a guide to the eye. The colored shaded regions
encompass the range between ηmin and ηmax. The gray shaded region represents the nH values
for which tight binding yields an advantage over charge-basis diagonalization, comparing ηavg for a
given nH . Improper tight binding allows for an accurate estimate of the low-energy eigenspectrum
already at Σmax = 1, yielding ηavg < 7 · 10−3 and maximum absolute error of less than 25 MHz.
We choose the parameters of Fig. 6.2(a), as well as ϕext = 0.47, ng1 = 0.2, ng2 = 0.3. We can
perform the same calculation for the parameters of Fig. 6.2(b) and obtain similar results, with tight
binding outperforming charge-basis diagonalization for small nH . The inset shows a schematic of
the flux-qubit circuit.
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using truncated diagonalization in the charge basis. We compute the average relative deviation

ηavg using energy estimates obtained via a choice of charge-basis cutoff ncut. By increasing ncut,

we increase nH and can thereby perform a direct comparison with ηavg values obtained via tight

binding, see Fig. 6.3. The shaded region of Fig. 6.3 indicates where tight binding outperforms

approximate diagonalization in the charge basis for a given nH . The advantage region for tight

binding is for small values of nH , indicating that when keeping few basis states, tight-binding states

yield a closer approximation to the true low-energy eigenstates than charge-basis states. At larger

values of nH , charge-basis diagonalization begins to outperform tight binding.

6.3 Tight binding applied to the current-mirror circuit

We expect the tight-binding method to be most useful in the study of larger circuits, where keeping

a generous number of basis states is not feasible due to memory requirements. To demonstrate the

tight-binding method on such a larger circuit, we apply it to the current mirror [52]. The Hamiltonian

of the current mirror is given in Eq. (5.3). Eliminating the cyclic degree of freedom corresponding

to the net charge on the circuit, we obtain

HCM =
2N−1∑
i,j=1

(ni − ngi)4(EC)ij(nj − ngj)− EJ

2N−1∑
i=1

cos(ϕi − ϕext/2N) (6.39)

− EJ cos(Σ2N−1
i=1 ϕi − ϕext/2N) + 2NEJ ,

where the circuit contains 2N−1 degrees of freedom and we remind the reader thatN refers to the

number of big capacitors. We have added 2NEJ to the Hamiltonian to make the spectrum positive

definite. As discussed in Ch. 5, the interest in this circuit originates from Kitaev’s prediction that

quantum information should be protected against relaxation and dephasing in the current mirror

[52]. For a representative choice of parameters, one can identify N ≈ 12 as the ideal value of

N [109]. Circuit sizes with such large values of N exceed our capabilities for finding eigenstates

and eigenenergies via diagonalization in the charge basis; the maximum value of N where we
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can achieve spectral convergence is N = 3.2 We note that we additionally attempted to simulate

Eq. (6.39) using DMRG [109, 145], and similarly found a limit of N = 3. Due to the long-range

interactions present in Eq. (6.39), bond dimensions become prohibitively large, which is a challenge

for convergence. Below, we show that the tight-binding method is an advantageous alternative for

simulating the current-mirror circuit at larger values of N .

Implementation of the tight-binding method for the current-mirror circuit proceeds in a manner

analogous to the case of the flux qubit, as neither circuit contains inductors. We choose a set of

protected circuit parameters given by ECB
/h = 0.2 GHz, ECJ

/h = 35 GHz, ECg/h = 45 GHz,

EJ/h = 10 GHz, ϕext = 0 and ngi = 0. To establish qualitatively that the current-mirror circuit with

these parameters is amenable to a tight-binding treatment, we fix a value of N and verify that the

localization ratios are all of order unity or larger. We observe that the localization ratios generally

increase with N , indicating that the tight-binding method should become increasingly accurate

with larger N . For an independent quantitative assessment of the validity of tight binding, we will

compare spectra obtained with tight-binding methods with exact results. For this purpose we first

apply the tight-binding method to the N = 3 current-mirror circuit.

We can obtain excellent agreement between spectra obtained via tight binding and exact re-

sults, with average relative deviations ηavg below 2 · 10−5, see Fig. 6.4. The best agreement is for

the energy of the ground state, for which we obtain agreement to within 16 kHz. For the first- and

second-excited states these results correspond to sub-MHz agreement, while for the third-excited

state agreement is on the order of a MHz. The use of the anharmonicity correction yields a substan-

tial benefit that is critical for achieving this level of accuracy. We find that the proper-tight-binding

method yields nearly identical results to those produced by improper tight binding, and therefore

those results are not shown in Fig. 6.4. Our highest accuracy approximations are obtained with

Σmax = 8, corresponding to nH = 1.5 · 107, beyond which we encounter numerical instabilities.

We emphasize that one can actually obtain a reasonable approximation to the spectrum based on

moderate values ofΣmax, as shown in Fig. 6.4. For example withΣmax = 1 and nH = 324, improper

tight binding with anharmonicity correction yields ηavg ≈ 8 · 10−3, corresponding to absolute errors
2Our calculations were performed on an Intel Xeon CPU E5-1650 24 core processor with 128 GB RAM.
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Figure 6.4: Performance of the tight-binding method as applied to the N = 3 current-mirror cir-
cuit. Similarly to the case of the flux qubit, we plot ηavg for improper tight binding (blue circle, solid
line), improper tight binding with anharmonicity correction (red triangle, solid line) and approximate
diagonalization in the charge basis (green circle, dashed line) as a function of nH . Improper tight
binding with anharmonicity correction outperforms charge-basis diagonalization across approxi-
mately four orders of magnitude in nH , as indicated by the shaded region. The sharp cliff in ηmin
for improper tight binding with anharmonicity correction at nH ≈ 105 is due to the inclusion of new
basis states that contribute to the ground state, yielding ηmin ≈ 10−4. The inset shows a schematic
of the N = 3 current mirror circuit. We choose ϕext = 0 and ngi = 0, with circuit parameters given
in the main text.
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Figure 6.5: Comparison of computed ground-state energies for the N = 5 current-mirror circuit.
Individual curves correspond to results obtained with tight-binding schemes improper (blue solid
circle, solid line), improper with anharmonicity correction (red triangle, solid line), proper (orange
open circle, solid line) and proper with anharmonicity correction of the global minimum (pink star,
solid line), as well as approximate diagonalization in the charge basis (green solid circle, dashed
line). Tight-binding techniques consistently yield lower and hence more accurate eigenenergies as
compared to charge basis diagonalization, with a difference of 163 MHz between the best results
obtained with tight binding and approximate diagonalization in the charge basis, see the inset. We
used the same current-mirror circuit parameters here as in Fig. 6.4.

of about 300 MHz.

We can contrast these results with those obtained using truncated diagonalization in the charge

basis. Using the same metric for memory efficiency previously applied to the flux-qubit example,

we find that tight binding is advantageous over a wide range of nH values, see Fig. 6.4. Specifically,

to achieve ηavg ≈ 8 · 10−3, truncated diagonalization in the charge basis requires about three more

orders of magnitude in memory resources as compared to tight binding. The advantage region for

tight binding extends over approximately four orders of magnitude 102 ≲ nH ≲ 106, as shown in

the shaded area of Fig. 6.4.

To extend toward the regime of ideal N , we apply the tight-binding method to obtain the spec-

trum of theN = 5 current-mirror circuit, which has 9 degrees of freedom. We compute the ground-
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Table 6.1: Eigenenergies for the ground state and first-excited state of the N = 5 current-mirror
circuit. Energies were computed using tight-binding schemes (IP) improper, (P) proper, (IPAC)
improper with anharmonicity correction, (PAC) proper with anharmonicity correction, as well as
(AD) approximate diagonalization in the charge basis. The energies are color coded from least
accurate (darkest) to most accurate (lightest). The three tight-binding flavors proper, IPAC and
PAC all perform similarly and outperform improper. The most accurate results for E0 and E1 were
obtained with tight binding rather than with approximate diagonalization in the charge basis (circuit
parameters used are the same as in Fig. 6.4).

state energy E0 and first-excited-state energy E1 using the four tight-binding techniques [improper,

proper, (IPAC) improper with anharmonicity correction and (PAC) proper with anharmonicity correc-

tion of them = 0minimum], see Tab. 6.1. By the variational principle, our computed eigenenergies

are upper bounds to the true eigenenergies [123, 124, 167]. Therefore, lower eigenenergy values

always imply higher accuracy. The proper, IPAC and PAC tight-binding schemes all perform sim-

ilarly but collectively outperform the improper scheme. The lowest eigenenergies are obtained

using IPAC, with bounds ϵ0 ≤ 81.6472 GHz and ϵ1 ≤ 82.7224 GHz. The largest cutoff we can

handle is Σmax = 5 (nH = 1.0 · 108), beyond which we encounter memory issues. We observe

that for this circuit, ansatz states localized in minima aside from the m = 0 minimum contribute to

the low-energy spectrum, and moreover the curvatures of those minima differ from those of the

m = 0 minimum. Otherwise, there would be no difference between the eigenenergies computed

with improper and proper tight binding. Note that schemes IPAC, PAC allow for rough estimates of

the eigenspectrum with a greedy cutoff Σmax = 2 (nH = 7.6 · 104), with calculated E0, E1 less than

200 MHz greater than the lowest obtained respective values.

We next compare tight-binding results with those from approximate diagonalization using the

truncated charge basis. For N = 5 the maximum possible charge cutoff we can handle is ncut = 3,

corresponding to a Hilbert-space dimension of d = 4.0 · 107 and number of nonzero Hamiltonian



116

matrix elements nH = 6.8 · 108. The best estimates for E0 and E1 obtained using approximate

diagonalization in the charge basis are in fact higher and therefore less accurate than the lowest

obtained values using tight-binding methods, see Tab. 6.1. Moreover, the tight-binding methods

consistently yield lower eigenenergy approximations across all nH values. Fig. 6.5 illustrates this

point for the ground-state energy E0, and similar results hold for the first-excited-state energy E1.

We thus find that the tight-binding method is more memory efficient than charge-basis diagonal-

ization for the N = 5 current-mirror circuit. More broadly, this may indicate that the tight-binding

method can serve as an interesting and useful method in the context of large circuits.
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7 High-Fidelity Gates on

Galvanically-Coupled Fluxonia
This chapter is based on the recent preprint (submitted for publication) D. K.Weiss et al., arXiv:2207.

03971 (2022).

In the previous two chapters we focused our attention in large part on quantifying the spectrum

and coherence properties of the current-mirror circuit. We have argued that the current-mirror is an

interesting example of a protected superconducting qubit that could possess enhanced coherence

times. In the process of analyzing the current mirror we developed theoretical and numerical tools

allowing for the analysis of other large circuits. Nevertheless the fluxonium qubit has already been

shown experimentally to possess coherence times ranging from hundreds of microseconds [31,

32] to milliseconds [33]. These record coherence times, coupled with charge-noise insensitivity

and large anharmonicity make the fluxonium promising as the building block of a future quantum

processor. Thus to make progress in the near term on enhancing all-important two-qubit-gate

fidelities, we focus on coupling low-frequency fluxonium qubits. It is important to note that for such

low-frequency qubits, high gate fidelities can be obtained in regimes where the RWA breaks down

[31, 55]. To predict dynamics, describe this non-RWA physics, and construct high-fidelity gates we

employ a Magnus expansion as introduced in Ch. 4.

Two-qubit gates on capacitively-coupled fluxonia have recently been reported [23, 100, 170,

171, 172], with infidelities on the order of 10−2 − 10−3. These experimental realizations have been

accompanied by a flurry of theoretical attention [173, 174, 175, 176, 177, 178, 179]. Fluxonium

qubits in these capacitive-coupling architectures have frequencies on the order of 500MHz - 1GHz,

generally thought to be the ideal frequency range for executing high-fidelity gates in these systems
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(considering gate schemes involving population transfer only in the qubit subspace) [173, 174,

176]. However, fluxonia with qubit frequencies less than 200 MHz have consistently achieved the

longest coherence times [31, 33], likely because low-frequency operation mitigates dielectric loss

[31, 32, 33]. To obtain fast, high-fidelity entangling gates between such low-frequency fluxonium

qubits, we revisit galvanic-coupling schemes previously proposed [180, 181, 182] and experimen-

tally implemented [183, 184] for flux qubits. A galvanic-coupling scheme helps yield strong coupling

strengths, as those are quantified by phase matrix elements rather than charge matrix elements

(as would be the case for capacitive coupling). Phase matrix elements are not suppressed by the

qubit frequency [178], making a galvanic-coupling architecture attractive for achieving entangling

gates on low-frequency qubits. Moreover, for fluxonium qubits whose inductance is kinetic [30]

rather than geometric [185], a galvanic connection can generally yield stronger coupling strengths

than those achieved through mutual inductance alone [185]. To make the coupling strength tun-

able, we generalize the so-called “fluxonium molecule” circuit introduced in Ref. [186] by inserting

a coupler Josephson junction as shown in Fig. 7.1.

We bias the heavy-fluxonium qubits at their half-flux sweet spots, as such fluxonia are linearly

insensitive to flux noise and thus have achieved record coherence times [31, 32, 33]. To avoid

directly exciting the coupler degrees of freedom, the interaction between the qubits and the coupler

is chosen to be dispersive. This allows for an effective description in which the coupler is eliminated,

but mediates a tunable XX interaction. We show that the strength of this effective XX coupling

changes sign as a function of coupler flux and thus passes through zero. In addition, we find that

the parasitic ZZ interaction strength is suppressed, which is a general feature of coupled systems

of low-frequency fluxonium qubits [100].

We describe how to execute two-qubit gates via sinusoidal modulation of the coupler flux for a

duration as short as a few drive periods. Based on our analysis outside the RWA regime, we find

that the implemented entangling operations generally differ from named gates by relative phases.

We compensate for these phase factors using single-qubit Z rotations to obtain a high-fidelity
√
iSWAP gate.

Ordinarily, single-qubit gates are designed in the convenient regime where the RWA applies
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coupler −

coupler +

(b)

(a)

Figure 7.1: Galvanically-coupled heavy fluxonia. (a) Schematic of the qubit-coupler interaction.
The fluxonium qubits a, b are each coupled to a harmonic coupler mode θ+ and a flux-tunable
coupler mode θ−, but do not interact directly. (b) Circuit diagram of the device. Qubit a (dark blue)
and qubit b (light blue) are galvanically linked to the two coupler modes θ± (orange). Each loop
can be threaded by an external flux Φµ.
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[14]. In this scenario, the switch into a frame co-rotating with the drive renders operations simple

rotations about fixed axes in the Bloch-sphere picture. Identity gates are obtained by idling and

single-qubit Z rotations are obtained either e.g. “virtually” by modifying the phase of the drive field in

software [187, 188] or “physically” by detuning the qubit frequency from that of the drive [189]. The

situation is reversed for systems of heavy fluxonium qubits [91, 92] where drive strengths exceeding

the RWA-range are employed – motivating the use of the laboratory frame for qubit operations [31,

55]. In this frame, qubits acquire dynamical phases in the absence of control pulses; in other

words, idling yields Z rotations of each qubit [31, 55]. To synchronize gates in multi-qubit systems,

identity gates of variable time duration must be devised. We show that identity gates can again be

implemented using sinusoidal modulation of the qubit fluxes for only a single drive period, resulting

in ultra-fast I gates (when compared to the single-qubit Larmor period). Combining the identity

gates with single-qubit Z rotations assists in achieving high-fidelity entangling gates.

7.1 Full-circuit Hamiltonian

To construct the Lagrangian and Hamiltonian of the full circuit shown in Fig. 7.1, we follow the

method of Vool and Devoret [96]. The circuit Lagrangian is

L =
Φ2
0

2(2π)2

∑
µ=a,b

Cµφ̇
2
µ +

∑
i=1,2

Ciφ̇
2
i + Cc[φ̇1 − φ̇2]

2

− 1

2
ELa(φa − φ1)

2 − 1

2
ELb(φb − φ2)

2

− 1

2

∑
i=1,2

ELiφ
2
i +

∑
µ=a,b

EJµ cos(φµ + ϕµ) + EJc cos(φ1 − φ2 + ϕc), (7.1)

with node variables and circuit parameters as shown in Fig. 7.1. We have defined the reduced

external flux ϕµ = 2πΦµ/Φ0 in terms of the applied magnetic flux through each loop Φµ and the

superconducting flux quantumΦ0 = h/2e. We consider the case of small deviations from otherwise

pairwise equivalent qubit inductors ELa, ELb, coupler inductors EL1, EL2 and stray capacitances

C1, C2. In the absence of parameter disorder, the coupler modes θ± = φ1 ± φ2 decouple. Using
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these variables the Lagrangian becomes

L =
1

2

(
Φ0

2π

)2
( ∑

µ=a,b

Cµφ̇
2
µ +

1

2
Cθ̇2+ + [Cc +

1

2
C]θ̇2− +

1

2
C dC θ̇+θ̇−

)
(7.2)

+
∑
µ=a,b

(EJµ cos[φµ + ϕµ]−
1

2
ELµφ

2
µ)−

∑
i=±

1

2
ELcθ

2
i + EJc cos(θ− + ϕc)

− 1

4
(ELdEL + E′

LdE′
L)θ+θ− +

1

2
ELaφa(θ+ + θ−) +

1

2
ELbφb(θ+ − θ−),

where ELc =
1
2(EL + E′

L) and we have introduced notation for the average and relative deviation

of the qubit inductors EL = 1
2(ELa + ELb), dEL = ELa−ELb

EL
, the coupler inductors E′

L = 1
2(EL1 +

EL2), dE′
L = EL1−EL2

E′
L

, and the stray capacitances C = 1
2(C1 + C2), dC = C1−C2

C . We perform

the Legendre transform to obtain the Hamiltonian and promote our variables to non-commuting

operators obeying the commutation relations [φµ, nµ] = i for µ = a, b and [θj , nj ] = i for j = ±.

The Hamiltonian is H = H0 + V +Hdis, where

H0 =
∑
µ=a,b

[4ECµn
2
µ +

1

2
ELµφ

2
µ − EJµ cos(φµ + π)] (7.3)

+ 4EC−n
2
− +

1

2
ELcθ

2
− − EJc cos(θ− + ϕc) (7.4)

+ 4EC+n
2
+ +

1

2
ELcθ

2
+,

V = −
∑
µ=a,b

ELµ

2
φµ[θ+ + (−1)µθ−] +

∑
µ=a,b

ELµ

2
δϕµ[−2φµ + θ+ + (−1)µθ−], (7.5)

Hdis =
1

4
(ELdEL + E′

LdE′
L)θ+θ− − 4EC−dCn+n− +O(dC2). (7.6)

We have neglected higher-order disorder contributions proportional to dC2 on the assumption that

disorder is small. The variable µ obeys the correspondence a → 0, b → 1 when appearing in an

exponent. Charging energy definitions are ECµ = e2/2Cµ, µ = a, b, EC+ = e2/(2[C/2]), EC− =

e2/(2[Cc+C/2]). We have separated the Hamiltonian into bare, coupling and disorder Hamiltonians

H0, V,Hdis, respectively. Additionally, we isolated the qubit flux shift away from the sweet spot

δϕµ = ϕµ − π and performed the variable transformation φµ → φµ − δϕµ.

The Hamiltonian H is composed of two fluxonium qubits and two coupler degrees of freedom,
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where the qubits interact with the coupler via terms in V . The coupler θ+ degree of freedom is har-

monic, while the coupler θ− degree of freedom is fluxonium like and thus tunable by external flux.

It is important to note that there is no term in the Hamiltonian directly coupling the qubits, thus the

qubit-qubit interaction is entirely mediated by the coupler. In the case of symmetric qubit inductors,

coupler inductors, and stray coupler capacitances, respectively, there are no terms in the Hamil-

tonian that directly couple the coupler degrees of freedom, simplifying the analysis. However, we

show in the following that small parameter disorder does not negatively affect device performance.

The coupler should have the following two desired properties. The first is it must allow for the

execution of high-fidelity two-qubit gates. A straightforward way to achieve this goal is to ensure

that the interaction of the qubits with the coupler degrees of freedom is dispersive, allowing for an

effective description in terms of two coupled qubits. The second requirement is that the two-qubit

coupling strength should be sufficiently flux dependent, allowing for tuning from zero to values that

allow for fast gates compared with the coherence times T1, T2 of each qubit. In the next section,

we derive the effective Hamiltonian of the system assuming that the qubit-coupler interaction is

dispersive. Following this, we discuss specific coupler parameter choices that satisfy the above

requirements.

7.2 Low-energy effective Hamiltonian

Near the half-flux sweet spots for each qubit, the qubit excitation energies are small compared with

the energy needed to excite the coupler or higher-lying fluxonium states. These energy scales nat-

urally define two subspaces: the low-energy subspace defined by the projector onto the computa-

tional states P =
∑

ℓ,m=0,1 |ℓa,mb, 0−, 0+⟩⟨ℓa,mb, 0−, 0+| and the high-energy subspace spanned

by all other states. We have defined the bare states |ℓa,mb, n−, p+⟩ that are eigenstates of H0

with eigenenergies Ea
l + Eb

m + E−
n + pω+. The variables ℓ,m, n, p correspond to the number of

excitations in the degrees of freedom corresponding to the variables φa, φb, θ−, θ+, respectively.

The coupler θ− mode is fluxonium like, however operated in a different parameter regime than the

heavy-fluxonium qubits. The bare wave functions and spectra of qubit a and the coupler θ− mode
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(c)

(d)

(a)

(b)

qubit coupler

Figure 7.2: Bare wave functions and energy spectra. (a) Bare wave functions and potential of
qubit a located at the half-flux sweet spot. The bare qubit transition frequency is ωa/2π = 62 MHz,
while the energy of the next excited state is 4.4 h·GHz above the qubit ground-state energy. (b)
Spectrum of qubit a as a function of the qubit flux Φa. The wave functions and spectra of qubit b
are qualitatively similar to those of qubit a. (c) Bare wave functions and potential of the coupler θ−
mode located at Φc/Φ0 = 0.27. The energy of the first excited state is more than 10 h·GHz above
the coupler ground-state energy. (d) Spectrum of the coupler θ− mode as a function of the coupler
flux ϕc. See Table 7.1 for device parameters.
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Table 7.1: Circuit parameters in h·GHz used throughout this chapter.

EJa EJb ECa ECb EL EJc E′
L EC− EC+

4.6 5.5 0.9 0.9 0.21 3 2 14.3 100

are shown in Fig. 7.2. We discuss below in detail the ideal parameter regime in which to operate

the coupler modes.

States in different subspaces are coupled by the perturbation V , which is small compared with

the relevant energy separations. Thus, the interaction is dispersive and we can obtain an effective

description of the low-energy physics via a Schrieffer-Wolff transformation [14, 133, 135, 136,

137]. (See Appendix A for a general discussion of the Schrieffer-Wolff transformation along with

associated computer-algebra code.) First, we consider the symmetric case Hdis = 0. Later, we

relax this assumption and allow for parameter disorder.

7.2.1 Effective Hamiltonian without parameter disorder

To carry out the transformation, the effective Hamiltonian Heff = PeSHe−SP and generator S are

expanded as

Heff = Heff,0 +Heff,1 +Heff,2 + · · · , (7.7)

S = S1 + S2 + · · · . (7.8)

We then collect terms of the same order and enforce both that the effective Hamiltonian is block

diagonal and that the generator is block off diagonal.

The zeroth- and first-order contributions to the effective Hamiltonian in the computational sub-

space (neglecting constant terms) are found by applying the projector P ontoH0 and V respectively
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[14, 133, 135, 136]

Heff,0 = PH0P = −
∑
µ=a,b

ωµ

2
σµz (7.9)

Heff,1 = PV P = −
∑
µ=a,b

Ωµσ
µ
x (7.10)

where ωµ = Eµ
1 − Eµ

0 and

Ωµ = EL⟨0µ|φµ|1µ⟩
[
δϕµ + (−1)µ

⟨0µ|θ−|0µ⟩
2

]
. (7.11)

The Pauli matrices are defined as e.g. σax =
∑

m=0,1 |0a,mb, 0−, 0+⟩⟨1a,mb, 0−, 0+|+ H.c.

Calculation of the second-order contribution Heff,2 to the effective Hamiltonian is facilitated by

the first-order generator S1. The expression for the matrix elements of S1 is well known [14] and

we obtain

S1 =
∑
µ=a,b
j=0,1

(∑′

j′,n

(−1)µ+1ϵ
µ,(1)
jj′,n|jµ, 0−⟩⟨j

′
µ, n−| −

∑
j′

η
µ,(1)
jj′ |jµ, 0+⟩⟨j′µ, 1+|

)
− H.c., (7.12)

defining the small parameters

ϵ
µ,(1)
jj′,n =

gµjj′,0n

Eµ
jj′ − E−

n0

, η
µ,(1)
jj′ =

Gµ
jj′

Eµ
jj′ − ω+

, (7.13)

where Eµ
jk = Eµ

j − Eµ
k , µ = a, b,−, and

gµjj′,0n =
EL

2
⟨0−|θ−|n−⟩⟨jµ|φµ|j′µ⟩, Gµ

jj′ =
EL

2

(
2EC+

ELc

)1/4

⟨jµ|φµ|j′µ⟩. (7.14)

We have introduced annihilation and creation operators a+, a†+ for the coupler θ+ mode via θ+ =

ℓosc√
2
(a+ + a†+) and ℓosc = (8EC+/ELc)

1/4 is the oscillator length. The primed sum in Eq. (7.12)

indicates that n is allowed to be zero if j′ ≥ 2, acknowledging that the perturbation V can couple

computational states to higher-lying states of the qubit fluxonia without exciting the coupler θ−
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mode. We have neglected contributions proportional to δϕµ in Eq. (7.12) as they are comparatively

small and can be neglected.

Using the first-order generator, we can compute the second-order effective Hamiltonian in the

low-energy subspace via the formula Heff,2 =
1
2P [S1, V ]P [14, 133, 135, 136], yielding

Heff,2 = −
∑
µ=a,b

χµ

2
σµz + Jσaxσ

b
x, (7.15)

where we have defined χµ = χµ
1 − χµ

0 and neglected global energy shifts. The qubit-frequency

renormalization coefficients are

χµ
j = −

∑
j′

(∑′

n

|gµjj′,n0|
2

δµjj′,n
+

|Gµ
jj′ |

2

∆µ
jj′

)
, (7.16)

defining the energy denominators δµjj′,n = E−
n0−E

µ
jj′ and∆

µ
jj′ = ω+−Eµ

jj′ . The two-qubit interaction

strength is

J =
∑
n≥1

ga01,0ng
b
01,0n

2

(
1

δa01,n
+

1

δa10,n
+

1

δb01,n
+

1

δb10,n

)

− Ga
01G

b
01

2

(
1

∆a
01

+
1

∆a
10

+
1

∆b
01

+
1

∆b
10

)
(7.17)

= J− − J+,

implicitly defining J±. Thus, the effective Hamiltonian in the computational subspace up to second

order is

Heff = −
∑
µ=a,b

ω′
µ

2
σµz + Jσaxσ

b
x −

∑
µ=a,b

Ωµσ
µ
x , (7.18)

where ω′
µ = ωµ+χµ. The Hamiltonian Heff describes two qubits with frequencies ω′

µ coupled via a

transverse XX interaction with strength J that is tunable with coupler flux ϕc. There are additional

single-qubit X terms with strength Ωµ that depend on the coupler flux ϕc as well as the qubit fluxes
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Figure 7.3: Sweet-spot contour. As the coupler flux is tuned, the qubit fluxes must be simultane-
ously adjusted according to δΦµ/Φ0 = (−1)µ+1 ⟨0−|θ−|0−⟩

4π in order to keep the qubits at their sweet
spots Ωµ = 0. The qubit fluxes are measured as deviations away from the bare sweet-spot loca-
tions. The sweet-spot contour C lies in the semi-transparent gray plane, which bisects the angle
between the two qubit-flux axes. The off position where Ωµ = J = 0 is marked by a black star.

δϕµ. We show below that both J and Ωµ can be tuned through zero, yielding two decoupled qubits.

The coefficient Ωµ is defined as

Ωµ = EL⟨0µ|φµ|1µ⟩
[
δϕµ + (−1)µ

⟨0−|θ−|0−⟩
2

]
, (7.19)

and arises at first-order in perturbation theory from two contributions. The first term on the right-

hand side is due to a qubit-flux offset from the sweet spot δϕµ, while the second is from the coupling

between the qubits and the coupler θ− mode. The matrix element ⟨0−|θ−|0−⟩ is ϕc dependent and

generally nonzero due to the absence of selection rules for a fluxonium biased away from a sweet

spot [90, 190]. Interpreting this second term as an effective flux shift away from the sweet spot for

each qubit, we cancel this shift by setting

δϕµ = (−1)µ+1 ⟨0−|θ−|0−⟩
2

. (7.20)

Thus, we obtain the coupler-flux dependent “sweet-spot contour” shown in Fig. 7.3. It is important
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to note that this phenomenon is independent of effects due to geometric flux crosstalk and arises

instead directly from coupling terms in V .

The two-qubit interaction arises at second-order in perturbation theory, with strength J = J− −

J+. The coefficient J− (J+) is due to interaction of the qubit with the coupler θ− (θ+) mode. The

strength of the interaction J− is tunable due to the dependence of the matrix elements ⟨0−|θ−|n−⟩

and energies E−
n on coupler flux. The coefficient J+ is static, thus the two-qubit interaction is

eliminated by tuning J− to equal J+ in magnitude [26]. We can understand the XX nature of the

two-qubit coupling by considering the terms appearing in V that mediate the interaction between

different subsystems. At the qubit sweet spots and considering only the computational states, the

operators φµ are off-diagonal and therefore proportional to σµx with proper choice of phases. Thus,

the effective two-qubit interaction consists of a virtual second-order process whereby an excitation

is exchanged between the two qubits, or both qubits are co-excited or co-de-excited.

In what follows, we always operate from the dc flux bias point on the sweet-spot contour Ωµ = 0

where the two-qubit coupling is turned off J = 0, see Fig. 7.3. We do this to keep both qubits at their

respective sweet spots and to prevent any unwanted parasitic entanglement between the qubits.

We refer to this configuration of dc fluxes as the “off position.” Both single- and two-qubit gates are

performed by ac flux excursions about this point. Note that the value of the coupler flux ϕc at the

off position is generally parameter dependent.

7.2.2 Effective Hamiltonian in the presence of disorder

We now consider how disorder in circuit parameters modifies the form of the effective Hamiltonian

Eq. (7.18). This disorder could arise for example from fabrication imperfections. We show below

that up to second order, inductive disorder merely results in a modification to Eq. (7.11), while

capacitive disorder does not contribute.

From Eq. (7.6) we see that inductive asymmetry adds a disorder term to the Hamiltonian

Hind =
1

4
(ELdEL + E′

LdE′
L)θ+θ−. (7.21)
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If we assume that the relative deviations are small compared with unity, it is justified to add this

term to V and treat it perturbatively. Observe that on the one hand, for virtual transitions mediated

by this term, the excitation number of either qubit cannot change. On the other hand, the excitation

number of the coupler θ+ mode must change. Thus, the first-order contributions vanish, and the

only second-order terms that contribute beyond a global energy shift are

H ind
eff,2 = −1

2

∑
µ=a,b

gind(η
µ
01 + ηµ10)σ

µ
x , (7.22)

where we have defined

gind =
ℓosc

4
√
2
(ELdEL + E′

LdE′
L)⟨0−|θ−|0−⟩. (7.23)

Thus up to second order, disorder in the inductors serves only to modify the expressions for the

coefficientsΩµ. This amounts to a shift in the sweet spot location of each qubit and can be canceled

by a corresponding shift of the static qubit fluxes. Thus, small disorder in either the qubit inductors

or the coupler inductors does not adversely affect device performance.

We now turn our attention to capacitive disorder C1 ̸= C2 (disorder in the qubit capacitances

poses no issue, as the qubits remain decoupled from all other degrees of freedom in the kinetic

part of the Hamiltonian). In this case, we proceed as before and treat perturbatively the capacitive

disorder term

Hcap = −4EC−dCn+n−. (7.24)

Consider the relation between phase and charge matrix elements in fluxonium [178]

⟨j−|n−|k−⟩ = i
E−

jk

8EC−
⟨j−|θ−|k−⟩, (7.25)

and observe that the charge matrix element vanishes if j = k. Thus, any virtual transition mediated

by the perturbation (7.24) must excite both the coupler θ− mode and the coupler θ+ mode and thus
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does not contribute at second order beyond a global energy shift.

7.3 Parameter regime of the coupler

Our derivation of an effective description in terms of two-coupled qubits depends on a dispersive

interaction between the qubits and the coupler. Additionally, we require that the coupling strength

be sufficiently flux dependent, allowing both for the execution of fast gates and for the interaction to

be efficiently turned off. Parameter choices for the coupler must support both of the above goals.

We quantify the dispersiveness of the interaction by calculating the Lamb shift χa (we obtain

similar results in the following utilizing instead χb). Considering the requirements on flux depen-

dence, we calculate the slope of the coupling strength J− with respect to Φc at the off position.

We target parameters such that |∂ΦcJ−|/h ≈ 100 MHz/Φ0 to achieve MHz level coupling strengths

(implying fast gates compared with T1, T2) for small ac flux excursions Φc ≲ 0.03Φ0 where a lin-

ear relationship between the coupling strength J and flux Φc is expected to be valid. This value

of the slope also ensures that the device remains insensitive to typical 1/f flux noise amplitudes

AΦ ≈ 1µΦ0 [148].

We sweep overEJc andEC− and calculate |∂ΦcJ−| as well as χa at the off position, see Fig. 7.4.

We fix E′
L/h = 2 GHz (ELc/h = 1.1 GHz), however we obtain similar results when considering

instead larger or smaller values of E′
L. It is worth emphasizing that the off position is parameter

dependent, thus we reposition the dc fluxes appropriately for each parameter set. For relatively

largeEJc and smallEC−, the lowest-lying states at intermediate flux values localize in minima of the

cosine potential. The off position is then generally near the sweet spot, where the vanishing energy

difference between the states |0−⟩, |1−⟩, as well as the rapid increase in the value of the matrix

element ⟨0−|θ−|1−⟩ enable flux tunability of J−. These factors in turn imply extreme sensitivity to

flux |∂ΦcJ−|/h≫ 100 MHz/Φ0 as well as a breakdown of the dispersive regime. For relatively small

EJc and large EC−, flux tunability is lost as the spectrum is nearly harmonic. For decreasing EJc

and EC−, excitation energies are suppressed leading to a breakdown of the dispersive interaction.

The parameter regime that supports both a dispersive interaction and “Goldilocks” flux dependence
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more flux 
sensitive

more flux 
insensitive

more
dispersive

Figure 7.4: Flux sensitivity and dispersiveness as a function of the coupler parameters EJc and
EC−. Coloring indicates |∂ΦcJ−|, i.e., the linear sensitivity of the coupling strength with respect
to flux. Contour lines quantify the dispersiveness of the qubit-coupler interaction via the Lamb
shift χa. Dispersive interaction and suitable flux sensitivity are achieved in the parameter regime
EC− > EJc ≳ ELc. The star marks the chosen parameters, Table 7.1.
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is thus EC− > EJc ≳ ELc. The parameters EC+, ELc that define the coupler θ+ mode are implied

by the parameter choices for the coupler θ− mode, with the restriction EC+ > EC− due to the finite

junction capacitance. The parameters used in the remainder of this chapter are given in Table 7.1.

7.4 Numerical results

We compute the low-energy spectra of the full-model HamiltonianH as well as the effective Hamil-

tonian Heff and plot the results in Fig. 7.5(a). We vary the coupler flux along the contour C shown

in Fig. 7.3 to ensure that the qubits remain at their sweet spots. Relative deviations between the

two spectra are at the level of a percent or less, indicating that the exact results can be accurately

described by an effective model of two qubits coupled by a tunable XX interaction. The value of the

tunable-coupling coefficient J is shown in Fig. 7.5(b) and crosses through zero at ϕc ≈ 0.27 · 2π.

At this position in flux space, the coupler is in the “off” state.

To quantify the on-off ratio of the tunable coupler, we numerically calculate the strength of

the parasitic ZZ interaction using the formula ζZZ = E1100 − E1000 − E0100 + E0000 [100]. The

eigenenergy Eijnp of the dressed state |ia, jb, n−, p+⟩ is found by numerically diagonalizing the full

model Hamiltonian H. The ZZ interaction strength ζZZ is less than 0.3 h·kHz at the off position for

the parameters considered here, implying an on-off ratio on the order of 105. It is a general feature

of coupled systems of low-frequency fluxonia that ZZ interaction strengths are suppressed, due to

the small repulsions between computational and non-computational states [100].

7.5 Drive operators

In the following sections we implement single- and two-qubit gates via ac flux modulation. To

analyze the effects of these time-dependent drives, we calculate thematrix elements of the relevant

drive operators. Allocating the time-dependent flux in the Hamiltonian in the same way as for static

flux generally introduces terms proportional to the time derivative of the external flux [191, 192].

Imposing the constraint that these terms should not appear implies a specific grouping of the flux in
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(a)

(b)

Figure 7.5: (a) Low-energy spectrum of the coupled system. As the coupler flux is tuned, the qubit
fluxes are adjusted to remain on the sweet-spot contour C, ensuring Ωµ = 0. The full lines corre-
spond to the exact spectrum calculated from the full modelH, while the dashed lines correspond to
the spectrum as calculated from the effective Hamiltonian Heff. Eigenenergies are labeled accord-
ing to the bare state |ij⟩ ≡ |ia, jb, 0−, 0+⟩ with the largest overlap with the corresponding dressed
state when the coupler is in the off state (at ϕc ≈ 0.27 · 2π, marked by the gray dashed line). (b)
Strength J of the effective XX coupling. Device parameters can be found in Tab. 7.1.
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the full HamiltonianH. For our parameters, we find to a good approximation that the ac qubit fluxes

are allocated to their respective inductors, and the ac coupler flux is spread across all four inductors.

We first decompose the external fluxes into static ϕ̄µ and time-dependent δϕµ(t) components,

where ϕ̄µ are the dc flux values at the off position. The ac qubit fluxes are already properly allocated,

while the appropriate grouping of the coupler flux is obtained via θ− → θ− − δϕc(t). The full time-

dependent Hamiltonian is thus H(t) = H0 + V + haδϕa(t) + hbδϕb(t) + hcδϕc(t), where

ha =
EL

2
(−2φa + θ+ + θ−), (7.26)

hb =
EL

2
(−2φb + θ+ − θ−), (7.27)

hc =

(
EL

2
φa −

EL

2
φb − ELcθ−

)
. (7.28)

Matrix elements of the operators hµ with respect to eigenstates of the static Hamiltonian Hst =

H0 + V determine the time evolution, once the time-dependent drives δϕµ(t) are specified. The

Schrieffer-Wolff transformation allows us to define new basis states that are approximate eigen-

states of Hst and thus perturbatively calculate these matrix elements.

The leading-order contributions to select matrix elements of the drive operators hµ occur at

second order. Thus, to include all relevant corrections to the wave functions that contribute to

these matrix elements, we calculate the second-order generator S2 associated with the Schrieffer-

Wolff transformation discussed in Sec. 7.2. To simplify the calculation we ignore all contributions

from the coupler θ+ mode due to the inequality |η| < |ϵ| in parameter regimes of interest, yielding

[14, 135]

S2 =
∑
µ=a,b
j=0,1

∑′

j′,n

ϵ
µ,(2)
jj′,n|jµ, 0−⟩⟨j

′
µ, n−|+

∑
j,k=0,1

∑′

j′,k′,n

ϵ
ab,(2)
jj′,kk′,n|ja, kb, 0−⟩⟨j

′
a, k

′
b, n−| − H.c. (7.29)
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where we have defined

ϵ
µ,(2)
jj′,n = −

∑
j′′=0,1

gµjj′′,00g
µ
j′′j′,0n

(Eµ
jj′ − E−

n0)(E
µ
j′′j′ − E−

n0)
+
∑′

j′′,n′

gµjj′′,0n′g
µ
j′′j′,n′n

(Eµ
jj′′ − E−

n′0)(E
µ
jj′ − E−

n0)
,

ϵ
ab,(2)
jj′,kk′,n =

∑
µ,ν=a,b
µ ̸=ν

[
gµjj′,00g

ν
kk′,0n

(Eµ
jj′ + Eν

kk′ − E−
n0)(E

ν
kk′ − E−

n0)
−
∑′

n′

gµjj′,0n′gνkk′,n′n

(Eµ
jj′ − E−

n′0)(E
µ
jj′ + Eν

kk′ − E−
n0)

]
.

At the off position, the effective Hamiltonian Heff = −ω′
a
2 σ

a
z − ω′

b
2 σ

b
z (ignoring third-order con-

tributions to the effective Hamiltonian) is diagonal in the basis of the bare computational states

|ℓa,mb, 0, 0⟩, ℓ,m ∈ {0, 1}. Assuming the qubit frequencies are not on resonance ω′
a ̸= ω′

b, the

dressed eigenstates are

|ℓa,mb, 0−, 0+⟩ = e−S |ℓa,mb, 0−, 0+⟩ =
[
1− S1 − S2 +

1

2
(S1)

2

]
|ℓa,mb, 0−, 0+⟩, (7.30)

up to second order. With the dressed eigenstates now written in terms of bare states, we may

compute matrix elements of the operators hµ associated with the ac flux drives.

7.5.1 Qubit-flux drive operators

Experimentally, the amplitude of an ac flux drive will typically be no larger than δΦµ ≤ 0.1Φ0 [31]. In

this case, we have checked that transitions to higher-lying states mediated by the drive operators

ha, hb are suppressed. Thus, we need only consider matrix elements of these operators in the

computational subspace. Using the expression (7.30) for the dressed states given in terms of the
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bare states, we find

⟨ℓm|ha|ℓm⟩/EL = 2
∑
ℓ′≥2

⟨ℓa|φa|ℓ′a⟩ϵ
a,(1)
ℓℓ′,0 +

1

2
⟨0−|θ−|0−⟩, (7.31)

⟨ℓm|ha|ℓ+ 1m⟩/EL = −⟨0a|φa|1a⟩ −
1

2

∑
n≥1

⟨0−|θ−|n−⟩(ϵa,(1)01,n + ϵ
a,(1)
10,n ) (7.32)

− 1

2

ℓosc√
2
(η

a,(1)
01 + η

a,(1)
10 ),

⟨ℓm|ha|ℓm+ 1⟩/EL = −1

2

ℓosc√
2
(η

b,(1)
01 + η

b,(1)
10 ) +

1

2

∑
n≥1

⟨0−|θ−|n−⟩(ϵb,(1)01,n + ϵ
b,(1)
10,n )], (7.33)

⟨ℓm|ha|ℓ+ 1m+ 1⟩/(EL/2) = −
∑

n,n′≥1

(ϵ
a,(1)
ℓℓ+1,nϵ

b,(1)
m+1m,n′ + ϵ

a,(1)
ℓ+1ℓ,nϵ

b,(1)
mm+1,n′)⟨n−|θ−|n′−⟩ (7.34)

+
∑
n≥1

(ϵ
ab,(2)
ℓℓ+1,mm+1,n + ϵ

ab,(2)
ℓ+1ℓ,m+1m,n)⟨0−|θ−|n−⟩

+
∑
n≥1

(ϵ
a,(1)
ℓℓ+1,nϵ

b,(1)
m+1m,n + ϵ

a,(1)
ℓ+1ℓ,nϵ

b,(1)
mm+1,n)⟨0−|θ−|0−⟩,

where we have introduced the shorthand |ℓ,m⟩ ≡ |ℓa,mb, 0−, 0+⟩ for states in the computational

subspace, and the labels are understood modulo 2. In Eqs. (7.31)-(7.33), second-order contri-

butions are small and can be neglected, while in Eq. (7.34) the leading-order contributions are at

second-order. These analytical approximations indicate that in the computational subspace and at

the off position, the operator ha simplifies dramatically to leading order to Ωa
acσ̄

a
x. This simplification

can be understood by considering each of the matrix elements in Eqs. (7.31)-(7.33) in turn. The

diagonal matrix element (7.31) yields a constant contribution at zeroth order, while the first-order

contributions are suppressed by small phase matrix elements between computational states and

higher-lying states. Thus this matrix element corresponds to the identity up to small corrections

and can be ignored. The matrix element (7.32) corresponding to the expected operator σ̄ax has con-

tributions at zeroth and first-order and is generally nonzero. The matrix element (7.33) vanishes at

the off position by definition, see Eq. (7.17). Finally, the leading-order contributions to the matrix

element ⟨ℓ,m|ha|ℓ+ 1,m+ 1⟩ occur at second order and are thus comparatively small. Thus to

leading order we obtain ha = Ωa
acσ̄

a
x where Ωa

ac = [(ha)00,10 + (hb)01,11]/2 Similar arguments follow

for hb, yielding hb = Ωb
acσ̄

b
x, where Ωb

ac = [(hb)00,01 + (hb)10,11]/2. We find excellent agreement
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between the semi-analytic formulas and exact results: for the parameters considered here, we ob-

tain |Ωa
ac|/h = 558, 561 MHz using Eqs. (7.31)-(7.34) and numerics, respectively. The coefficients

associated with all other operators (aside from the irrelevant identity) in the decomposition of ha

are of the order of 2 h·MHz or smaller in absolute value, as calculated both from the semi-analytic

formulas and exact results.

7.5.2 Coupler-flux drive operator

The operator hc activated by coupler-flux modulation induces both wanted and unwanted transi-

tions in the computational subspace. The latter proceed through virtual excitations of higher-lying

states and are discussed in detail in Sec. 7.7.2.1. In the following we focus on the former and

compute the matrix elements of hc in the computational subspace.

Thematrix elements of hc governing the wanted transitions can be obtained within second-order

perturbation theory using Eq. (7.30)

⟨ℓm|hc|ℓm⟩ = −ELc⟨0−|θ−|0−⟩ − EL

∑
ℓ′≥2

⟨ℓa|φa|ℓ′a⟩ϵ
a,(1)
ℓℓ′,0 (7.35)

− EL

∑
m′≥2

⟨mb|φb|m′
b⟩ϵ

b,(1)
mm′,0,

⟨ℓm|hc|ℓ+ 1m⟩ = EL

2
⟨0a|φa|1a⟩+ ELc

∑
n≥1

⟨0−|θ−|n−⟩(ϵa,(1)01,n + ϵ
a,(1)
10,n ), (7.36)

⟨ℓm|hc|ℓm+ 1⟩ = −EL

2
⟨0b|φb|1b⟩ − ELc

∑
n≥1

⟨0−|θ−|n−⟩(ϵb,(1)01,n + ϵ
b,(1)
10,n ), (7.37)

⟨ℓm|hc|ℓ+ 1m+ 1⟩ = − ELc

EL/2
⟨ℓm|ha|ℓ+ 1m+ 1⟩. (7.38)

Careful consideration of the above matrix elements indicates that at the off position, hc can be

simplified to

hc = Jacσ̄
a
xσ̄

b
x, (7.39)
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where we have defined the ac XX coupling strength

Jac =
1

2

(
⟨00|hc|11⟩+ ⟨01|hc|10⟩

)
. (7.40)

We detail below how this simplification proceeds. The diagonal matrix element (7.35) is a constant

up to small corrections for the same reasons as for ha and can be ignored. The matrix elements

in Eqs. (7.36)-(7.37) approximately vanish at the off position based on the following argument.

Equating J− and J+ and making the approximation that the qubit excitation energies are small

compared with those of the coupler degrees of freedom, we find

∑
n≥1

|⟨0−|θ−|n−⟩|2

E−
n0

≈ 1

2ELc
. (7.41)

This implies that the second terms in Eqs. (7.36)-(7.37) approximately cancel the first terms. The

two-qubit matrix element (7.38) which appears at second order is then expected to dominate, as

second-order contributions to the matrix elements Eqs. (7.35)-(7.37) are comparatively small and

can be neglected. For our parameters, we obtain |Jac|/h = 14.3, 18.3 MHz using the semi-analytic

formulas Eqs. (7.35)-(7.38) and exact numerics, respectively. We have checked that the semi-

analytic results agree with exact numerics in the limit of large ELc, where the interaction becomes

more dispersive.

7.6 Single-qubit gates

There are important differences between how single-qubit gates are performed on high frequency

qubits like transmons and how they are executed on low-frequency qubits like those studied here.

For transmon qubits, drive strengths are typically small compared with the qubit frequency. It is

then appropriate to move into a frame co-rotating with the drive frequency (typically on or near res-

onance with the qubit frequency) and perform the RWA [14, 193]. The rotating-frame Hamiltonian

is now time independent, allowing for the relatively straightforward calculation of time-evolution

operators (propagators). Observe that in this rotating frame, idling corresponds to an identity op-
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eration (assuming a resonant drive). In contrast, to obtain fast gates for low-frequency qubits like

heavy fluxonium [31] or superconducting composite qubits [55], drive strengths typically equal or

exceed the qubit frequencies. Thus, gates are typically performed in the laboratory frame as it is

not appropriate to move into a rotating frame like that described above [31, 55, 56, 194]. In the

lab frame, qubit states acquire dynamical phase factors while idling. Indeed we utilize these Z

rotations in Sec. 7.7 for achieving a high-fidelity
√
iSWAP gate. Nevertheless in the absence of

drives, we obtain an identity operation (up to an overall sign) only by idling for exact multiples of

the Larmor period τq = 2π/ωq, where ωq is the qubit frequency. If we now consider multiple qubits

with non-commensurate frequencies, it is not obvious how to perform an operation on one qubit

without a second qubit acquiring dynamical phase during the gate time. Therefore, we seek an

active means of obtaining variable-time identity operations for low-frequency qubits. Single-qubit

X/2 and Y/2 gates can be obtained using the techniques described in e.g. Refs. [31, 55], allowing

for universal control when combined with arbitrary Z rotations achieved by idling.

7.6.1 Identity gates

We utilize flux pulses that begin and end at zero and whose shapes are described by sinusoidal

functions, but that only last for a single period [55]. This pulse shape is chosen because the

external flux averages to zero1, helping eliminate long-timescale distortions [131]. Recall from

Sec. 7.5.1 that turning on a qubit a (b) flux drive activates a XI (IX) term in the Hamiltonian. This is

the expected generalization from the case of a single fluxonium biased at the half-flux sweet spot

and subject to a flux drive [31]. For simplicity we thus focus on the case of an isolated fluxonium.

The Hamiltonian is Hfl(t) = Hπ +Hd(t), where

Hπ = 4ECn
2 − EJ cos(φ) +

1

2
EL(φ+ π)2, (7.42)

Hd(t) = ELφδϕ sin(ωdt). (7.43)

1Many other simple pulse shapes achieve net-zero flux, such as those utilized in Ref. [31], and can yield high-fidelity
gates. Single-period sinusoids are used here for simplicity.
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Projecting onto the computational subspace yields [31]

Hq(t) = −ωq

2
σz +A sin(ωdt)σx, (7.44)

defining the effective drive amplitude A = EL⟨0|φ|1⟩δϕ and making use of selection rules at the

half-flux sweet spot. For typical heavy-fluxonium parameters such as those chosen for qubits a and

b, the amplitude of the driveA exceeds the qubit frequency ωq for deviations from the sweet spot as

small as δϕ = 0.02 · 2π. Indeed, such strong drives have been used to implement fast single-qubit

gates with high fidelities [31, 55]. Here, we utilize similarly strong drives for the implementation of

identity pulses.

We seek conditions on the drive strength A and frequency ωd such that the propagator Uq(t) is

equal to the identity operation after a single drive period, Uq(t = 2π/ωd) = 1. Utilizing a Magnus

expansion as described in Sec. 4.3, we see that the condition on obtaining an identity gate after a

single period of the drive is

πωq

ωd
J0

(
2A

ωd

)
= 2πr, r ∈ Z, (7.45)

which is an equation for the variables A,ωd. Solutions which avoid fixing ωd based on the value of

ωq are those for r = 0 which satisfy

2A

ωd
= jk, k = 1, 2, . . . , (7.46)

where jk is the kth zero of J0. Thus, by choosing a combination of drive amplitude A and frequency

ωd (and thus gate time) obeying Eq. (7.46), we obtain a variable-time identity gate. We note that it

is also possible to arrive at Eq. (7.45) using a perturbative analysis in the context of Floquet theory

[60].
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7.6.2 Numerical results

We present numerical results illustrating that the proposed identity gates can be achieved with high

fidelity. To calculate the closed-system fidelity of a quantum operation we utilize the formula [195]

F =
Tr(U †U) + |Tr[U †

TU ]|2

d(d+ 1)
, (7.47)

where d is the dimension of the relevant subspace of the Hilbert space, UT is the target unitary and

U is the projection onto the d dimensional subspace of the propagator realized by time evolution.

This formula is especially useful when considering systemswhere leakagemay be an issue; in such

cases, deviations of the operator U from unitarity are penalized by the term Tr(U †U). To obtain the

propagator associated with time evolution under the Hamiltonian Hfl(t), it is most appropriate to

express Hfl(t) in the eigenbasis of the static Hamiltonian Hπ. The qubit states are the two lowest-

energy states, and we retain up to eight eigenstates to monitor leakage. Diagonalization of Hπ

is done using scqubits [196], while time-dependent simulations are performed using QuTiP [197,

198]. Sweeping over the drive frequency and amplitude of the flux pulse, we monitor the fidelity

of an identity operation, taking d = 2 and UT = 1 in Eq. (7.47), see Fig. 7.6. Regions of high

fidelity appear as “fingers” in the space of inverse gate time (drive frequency ωd) and effective

drive amplitude A. The colored lines are given by A = jkωd/2 for k = 1, 2, 3, 4, 5, corresponding to

the drive parameters that analytically predict identity gates. These lines overlap with the regions of

high fidelity computed numerically for large amplitude A compared with the qubit frequency ωq. For

decreasing ωd and A, the lines begin to deviate from the high-fidelity fingers due to the breakdown

of the Magnus expansion [67]. Nevertheless, we find numerically that high-fidelity F > 0.9999

identity gates can be achieved across a wide range of inverse gate times 0.5 ≲ ωd/ωq ≲ 7. Leakage

outside the computational subspace is negligible for the parameters considered here.

The time evolution of the qubit states in the lab frame in the form of trajectories on the Bloch

sphere during identity pulses is shown in Fig. 7.7. The drive frequencies ωd used in Figs. 7.7(a)-(c)

are ωd/ωq = 5.3, 3.3, 2.1, with drive amplitudes A obtained from Eq. (7.46) using the Bessel zeros
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Figure 7.6: Variable-time single-qubit identity pulse. We plot the fidelity of an identity operation
under a single-period sinusoidal qubit-flux drive. Lines mark locations in amplitude and frequency
space where A = jkωd/2 for the first 5 zeroes jk of J0. Multiple other lines of high fidelity corre-
sponding to larger zeros of J0 are visible in the numerics. These variable-time identity gates are
ultra-fast, with gate times that can be small compared to the Larmor period. The point-like region
of high fidelity at δϕ = 0 corresponds to the passive identity operation. The marked points label
example drive parameters used for visualizing Bloch sphere trajectories in Fig. 7.7. Numerical
simulations are performed using the parameters of qubit b where ωq/2π = 37 MHz.
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(a)

(b)

(c)

Figure 7.7: (a-c) Bloch sphere trajectory in the lab frame of the initial states |0⟩ and |1⟩ subject to
the pictured identity gates. The pulse parameters utilized here are marked in Fig. 7.6. Each gate
achieves an identity operation with fidelity F ≥ 0.9998.
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j1, j1, j2, respectively. In all three cases we obtain fidelities of F ≥ 0.9998. Numerical optimization

of the drive amplitude keeping the drive frequency fixed yields F > 0.99999 in each case. The

optimized amplitude generally differs from the amplitude derived analytically by less than or of the

order of a percent.

7.7 Two-qubit entangling gate

When performing two-qubit gates on low-frequency fluxonium qubits, we encounter similar issues

to those present for single-qubit gates. To achieve relatively fast gate times compared with T1 and

T2, we utilize drive strengths where the RWA is invalid. We perform a Magnus expansion in a frame

co-rotating with the qubit frequencies to account for the counter-rotating terms order-by-order. We

note that similar results can be obtained using a Floquet analysis [59, 62]. Because single-qubit

gates are performed in the lab frame, we then transform the rotating-frame propagator back into

the lab frame.

To activate a two-qubit interaction, we consider an ac sinusoidal coupler flux drive ϕc(t) =

δϕc sin(ωdt). The time-dependent Hamiltonian in the computational subspace is

H2q(t) = −ω
′
a

2
σ̄az −

ω′
b

2
σ̄bz +A sin(ωdt)σ̄

a
xσ̄

b
x, (7.48)

where we recall that gates are performed in the basis of the dressed states as detailed in Sec. 7.5.

The Pauli matrices are defined as e.g. σ̄ax =
∑

j=0,1 |0j⟩⟨1j| + H.c., etc., utilizing the shorthand

|iajb⟩ ≡ |ia, jb, 0−, 0+⟩. The effective drive amplitude A ≡ Jacδϕc is defined in terms of the ac

two-qubit coupling strength Jac given in Eq. (7.40). For our parameters, Jac = 18.3 MHz. Just

as for single-qubit gates, we drive with sinωdt rather than cosωdt because we intend to activate

the interaction for only one or a few drive periods n2. In general, the propagator at the final time
2The reason we keep the treatment general enough to include multiple drive periods will become clear when we

consider time evolution on the full system: for realistic parameters, a single drive period leads to drive amplitudes so
large that we obtain fidelity-degrading contributions from high-lying coupler states.
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τn = 2πn/ωd is

U(τn) = T e−i
∫ τn
0 H2q(t′)dt′ =



a 0 0 d

0 b c 0

0 −c∗ b∗ 0

−d∗ 0 0 a∗


, (7.49)

where T is the time-ordering operator and |a|2+ |d|2 = |b|2+ |c|2 = 1. To obtain an entangling gate,

we target drive parameters A,ωd that yield |b| = |c| = 1/
√
2 and d = 0 3. We parametrize this gate

as

√
ϕSWAP =



eiα 0 0 0

0 eiβ/
√
2 eiγ/

√
2 0

0 −e−iγ/
√
2 e−iβ/

√
2 0

0 0 0 e−iα


. (7.50)

To see that this gate is entangling, note either that it can produce Bell states or that it can be

transformed into the entangling gate

√
iSWAP =



1 0 0 0

0 1/
√
2 −i/

√
2 0

0 −i/
√
2 1/

√
2 0

0 0 0 1


, (7.51)

using only single-qubit operations [200]. One such transformation using single-qubit gates is

√
iSWAP = Ra

Z(θa1)R
b
Z(θb1)

√
ϕSWAPRa

Z(θa2)R
b
Z(θb2), (7.52)

3A gate with |a| = |d| = 1/
√
2 and |c| = 0 is also entangling, yielding a

√
bSWAP-like gate [199]. Here, we focus

instead on entangling gates performed in the |01⟩, |10⟩ subspace rather than in the |00⟩, |11⟩ subspace.
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where

Rj
Z(θ) = exp(−iθσ̄jz/2), j = a, b.

Expressions for the Z rotation angles in Eq. (7.52) in terms of α, β and γ are specified below. The

relationship (7.52) provides an explicit recipe for constructing a
√
iSWAP gate, given a

√
ϕSWAP

gate and arbitrary single-qubit Z rotations. Quantum algorithms are typically written in terms of

named gates like
√
iSWAP [201, 202, 203], as opposed to the native gate

√
ϕSWAP achieved

here. Thus, it may be useful to immediately transform the obtained
√
ϕSWAP gate into the more

familiar
√
iSWAP. This is the strategy we pursue here.

Generally, only three of the Z rotations in Eq. (7.52) are necessary. Wemake use of the freedom

of the extra Z rotation by choosing the angle θb2 ∈ [0, 2π) that optimizes the overall gate time,

including the Z rotations. The remaining angles are set to

θa1 =
π

2
+ α+ γ − θb2, (7.53)

θb1 = α− β − θb2,

θa2 = −π
2
+ β − γ + θb2,

to satisfy Eq. (7.52). In the following, we find explicit expressions for α, β and γ in terms of the

drive parameters and qubit frequencies. Because we operate in the lab frame, these Z rotations

are obtained by idling. Idle times for coincident Z rotations may differ in general, therefore to

synchronize the time spent performing single-qubit gates we make use of the variable-time single-

qubit identity gates discussed in Sec. 7.6.

7.7.1 Constructing
√

ϕSWAP

The propagator
√
ϕSWAP can be obtained from time evolution under the Hamiltonian H2q(t) as

follows. The qubit frequencies ω′
a, ω

′
b are fixed by operating the qubits at their sweet spots, while

the drive parameters A,ωd may be varied. The Hamiltonian H2q(t) only couples the pairs of states
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|00⟩ ↔ |11⟩, |01⟩ ↔ |10⟩, thus H2q(t) decomposes into a direct sum H2q(t) = H−(t)
⊕
H+(t),

where

H±(t) = −ω±
2
Σ±
z +A sin(ωdt)Σ

±
x , (7.54)

defining ω± = ω′
a ± ω′

b. The Hamiltonians H+(t),H−(t) describe dynamics in the |00⟩, |11⟩, and

the |01⟩, |10⟩ subspaces, respectively. The corresponding Pauli matrices are denoted by Σ±
j , for

example Σ+
z = |00⟩⟨00| − |11⟩⟨11|. For realistic parameters, the two-level-system frequencies ω+

and ω− are large compared with the drive amplitude A. To obtain the associated propagators we

perform a Magnus expansion, applying results from Sec. 4.2. We retain terms up to second order

in the Magnus series as higher-order terms are small and can be neglected. The propagators after

n periods of the drive are

U±(nτd) =

cos(ξ±)ei(ϑ±−tanc[ξ±]ε±) sin(ξ±)

− sin(ξ±) cos(ξ±)e−i(ϑ±−tanc[ξ±]ε±)

 , (7.55)

where quantities in Eq. 7.55 are defined in Sec. 4.2 and the ± subscripts indicate dependence on

the frequencies ω±. For instance we have

ξ± =
2Aωd

ω2
d − ω2

±
sin
(
πnω±
ωd

)
. (7.56)

To obtain the
√
ϕSWAP gate, we require

U+(τn) =

cos(ξ+)ei(ϑ+−tanc[ξ+]ε+) sin(ξ+)

− sin(ξ+) cos(ξ+)e−i(ϑ+−tanc[ξ+]ε+)

 !
=

eiα 0

0 e−iα

 , (7.57)

U−(τn) =

cos(ξ−)ei(ϑ−−tanc[ξ−]ε−) sin(ξ−)

− sin(ξ−) cos(ξ−)e−i(ϑ−−tanc[ξ−]ε−)

 !
=

1√
2

 eiβ eiγ

−e−iγ e−iβ

 . (7.58)



148

The solution for Eq. (7.57) is

ξ+ =
2Aωd

ω2
d − ω2

+

sin
(
nπ

ω+

ωd

)
= pπ, p ∈ Z, (7.59)

which should be interpreted as an equation involving the unknowns A,ωd. For any nonzero A,

solutions to Eq. (7.59) for p = 0 are

ωd = nω+/m, (m = 1, 2, 3, . . . ,m ̸= n). (7.60)

For nonzero p, solutions (A,ωd) can only be found by numerically solving the full transcendental

equation (7.59). We find in the following that to satisfy Eq. (7.58), it is necessary to have the

freedom of varying the drive amplitude A. Thus, we only consider the case p = 0. Settingm = n is

excluded in Eq. (7.60) as in this case the left-hand side of Eq. (7.59) does not vanish. However, this

restriction is no issue, as motivated by the drive frequency ωd = ω− used to obtain the
√
iSWAP

gate when the RWA is valid [14] we do not consider on resonance driving of the |00⟩ ↔ |11⟩

transition ωd = ω+. With ωd given by Eq. (7.60), the expression for ε+ simplifies to ε+ = A2

ω2
d

πnm
1−m2

and we satisfy Eq. (7.57) with the phase α = ϑ+ − ε+.

Considering now the requirement (7.58) for U−, the solution is

ξ− =
2Aωd

ω2
d − ω2

−
sin
(
nπ

ω−
ωd

)
= ±π

4
+ πq, q ∈ Z, (7.61)

where the ± indicates that the sign may be absorbed into the phases β, γ. We interpret Eq. (7.61)

as an equation for the unknown A, as we have fixed ωd previously. Solving for A yields

A = ±
π(ω2

d − ω2
−)

8ωd sin(πnω−
ωd

)
, (7.62)

where we have set q = 0 to minimize the magnitude of A. In general, the fraction on the right-hand

side of Eq. (7.62) may be positive or negative, depending on n and the magnitude of ω− relative

to ωd. Thus, we choose the sign of ξ− = ±π/4 based on which yields a positive drive amplitude A.
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With the drive frequency and amplitude given by Eq. (7.60) and Eq. (7.62) respectively, we satisfy

Eq. (7.58) with phases β = ϑ− − 4ε−/π and γ = 0 or γ = π depending on the sign of ξ−.

The previous analysis only leaves us to choose the integersm,n, see Eq. (7.60). We make use

of this freedom to limit the drive amplitude A in magnitude. Careful inspection of the removable

singularity in Eq. (7.62) suggests the usage of a drive frequency ωd near ω−. This can be achieved

by a combination of n and m such that their ratio n/m closely approximates ω−/ω+. The optimal

choice of n must balance between mitigating the effects of T1 and T2 by keeping gate durations

2πn/ωd as short as possible, and holding at bay unwanted population transfer incurred by strong

drive amplitudes A ∼ 1/n [see Sec. 7.7.2.1]. With n andm specified as such, we have constructed

the
√
ϕSWAP gate allowing for the execution of a

√
iSWAP gate when combined with single-qubit

Z rotations.

7.7.2 Full-system numerical simulations

This realization of
√
iSWAP reaches closed-system (open-system) fidelities as high as F = 0.9996

(F = 0.9994), which we obtain from numerical simulation of the full system as detailed in the

following. Time evolution is based on the Hamiltonian H(t) = H0 + V +
∑

µ=a,b,c hµδϕµ(t), see

Eqs. (7.3)-(7.5) as well as Eqs. (7.26)-(7.28) for the flux-activated terms. The dc fluxes entering

H0+V are set to the off position4, as is appropriate for performing single- and two-qubit gates. For

numerical efficiency,H(t) is expressed in the eigenbasis of the static HamiltonianH0+V . The com-

putational states of interest are the four lowest-energy states, with qubit frequencies ω′
a/2π = 58.1

MHz, ω′
b/2π = 35.5 MHz. Beyond these, we include up to 50 additional states in our simulations.

For the parameters considered here, we have ω−/ω+ = 0.24, thus we choose n/m = 1/4, yielding

ωd/2π = 23.4 MHz. Upon including the effects of decoherence, the choice n = 2 and thus m = 8,

A/2π = 2.9 MHz optimizes the gate fidelity.

The full gate duration is ttot = 2πn/ωd+max(ta1, tb1)+max(ta2, tb2), where tµi = −θµi/ωµ. The

equations for the times tµi are understood modulo 2π and the Z rotation angles are known in terms
4The off position is found by minimizing the energy of the |11⟩ state, analogously to how the off position is found

based on the effective Hamiltonian Heff. The exact and effective values for the coupler flux at the off position typically
have a relative deviation of less than one percent
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(a)

(b)

(c)

(d)

Figure 7.8:
√
iSWAP gate composed of a

√
ϕSWAP gate and corrective Z rotations. (a)

Quantum-circuit representation of the flux pulses shown in (b). The qubit flux δϕa(t) (blue) is mod-
ulated to achieve the required identity operation, while the coupler flux δϕc(t) (orange) is activated
to entangle the qubits. Single-qubit Z rotations are obtained during the time spent idling. (c) Time
evolution with the initial state |00⟩. Population transfer to the |11⟩ or other states is negligible during
the

√
ϕSWAP time window. (b) Time evolution for |01⟩ as the initial state. The |01⟩ and |10⟩ states

exchange population during the segment when the coupler flux is nonzero. The closed-system
fidelity of the

√
iSWAP gate is F = 0.9996.
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of the phases α, β, γ, see Eq. (7.53). The angle θb2 is a free parameter and is chosen to minimize

the overall gate time by forcing the idle times after the
√
ϕSWAP gate to coincide ta1 = tb1. For our

parameters we obtain ttot = 113 ns, where 2πn/ωd = 85 ns and the single-qubit gates require 28

ns, see Fig. 7.8. For the initial state |00⟩, population appreciably varies only during the single-qubit

identity-gate segments, see Fig. 7.8(c). Meanwhile, for the state |01⟩, population transfer to the |10⟩

state occurs during the
√
ϕSWAP portion of the gate, see Fig. 7.8(d). Closed-system simulations

of this pulse sequence yield a gate fidelity of F = 0.9996 for achieving a
√
iSWAP gate, calculated

using Eq. (7.47), taking d = 4 and UT =
√
iSWAP. Infidelities at the 10−4 level are likely due to

residual effects from the higher-lying states that cause unwanted transitions in the computational

subspace as described in the following.

7.7.2.1 Virtual transitions involving higher-lying states

The full analysis of time evolution when modulating the coupler flux requires consideration of

higher-lying states. These states outside the computational subspace, while largely remaining

unoccupied, participate as virtual intermediate states in unwanted transitions. We estimate the

amount of population transfer between the states |i⟩ = |ℓa,mb, 0−, 0+⟩ and |f⟩ = |ℓ′a,m′
b, 0−, 0+⟩

with i ̸= f at the conclusion of the gate t = 2πn/ωd using time-dependent perturbation theory up

to second-order [81]

Tℓm→ℓ′m′ =

∣∣∣∣∣ i⟨f |δϕchc|i⟩ωd

E2
fi − ω2

d

(1− e2πinEfi/ωd) (7.63)

+
∑
v

ω2
d⟨f |δϕchc|v⟩⟨v|δϕchc|i⟩

E2
vi − ω2

d(
[2Evi + Efi][1− e2πniEfi/ωd ]

Efi[E
2
fi − 4ω2

d]
− 1− e2πniEfv/ωd

E2
fv − ω2

d

)∣∣∣∣∣
2

,

where the sum on v is over virtual intermediate states |v⟩ = |ℓ′′a,m′′
b , p−, q+⟩ and we have defined

Efv = Eℓ′m′00 − Eℓ′′m′′pq, etc. The top line of Eq. (7.63) represents direct transitions between the

states |i⟩ and |f⟩, occurring for nonzero ⟨f |hc|i⟩ (e.g. |i⟩ = |0a, 1b, 0−, 0+⟩ and |f⟩ = |1a, 0b, 0−, 0+⟩).
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Figure 7.9: Schematic of unwanted transitions in the computational subspace. These transitions
are due to virtual excitations of the higher-lying states |ℓa,mb, 1−, 0+⟩, ℓ,m ∈ {0, 1} mediated by
the drive operator hc. As an example, we show the four perturbative paths contributing to the
undesired transition |1a, 0b, 0−, 0+⟩ ↔ |1a, 1b, 0−, 0+⟩.

These are the wanted transitions discussed previously. The second and third lines of Eq. (7.63) are

the second-order contributions and allow for unwanted transitions. Based on numerical calculation

of the matrix elements of hc between the computational states and higher-lying states, we find that

the four states |v⟩ = |ℓa,mb, 1−, 0+⟩, ℓ,m ∈ {0, 1} with an excitation in the θ− mode dominate the

sum on v, see Fig. 7.9. (Note that this virtual process is heavily suppressed in the context of qubit-

flux drives, due to the comparatively small coefficient EL/2 ≪ ELc multiplying the operator θ− in

ha).

These transitions mediated by the higher-lying states can significantly degrade gate fidelities.

Indeed, attempting to implement the
√
ϕSWAP gate with only a single drive period leads to poor

fidelities F < 0.9 due to the unwanted transitions. Slowing down the gate by utilizing two drive

periodsmitigates this issue in large part by reducing the required drive amplitude. It is an interesting
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avenue for further research to investigate means for overcoming this limitation on δϕc to achieve

faster gate times without sacrificing fidelity.

7.7.2.2 Decoherence effects

To include the detrimental effects of decoherence on gate fidelities, we numerically solve the Lind-

blad master equation

dρ(t)

dt
= −i[H(t), ρ(t)] +

∑
µ=a,b

[Γµ
1D(Lµ

1 )ρ(t) + Γµ
ϕD(Lµ

ϕ)ρ(t)], (7.64)

where ρ(t) is the system density matrix and

D(L)ρ = LρL† − 1

2
{L†L, ρ},

is the standard form of the dissipator. The relevant jump operators L are here:

Lµ
1 = σ̄µ−, Lµ

ϕ = σ̄µz .

We neglect decoherence processes due to higher-lying states, noting that their occupation remains

minimal throughout the duration of the pulse. We consider two sets of estimates for decoherence

rates, one conservative, Γϕ = 1/80µs,Γ1 = 1/300µs, and one optimistic, Γϕ = 1/4000µs,Γ1 =

1/1000µs, both consistent with recent experiments [31, 33]. At the conclusion of the gate, we

project onto the computational subspace and perform numerical quantum process tomography

[174, 197, 198, 204] to obtain the process matrix χ. The open-system gate fidelity is calculated

using the formula

F =
dTr(χχT) + Tr(χ)

d+ 1
, (7.65)

see Appendix C for the derivation of Eq. (7.65) based on results presented in Refs. [195, 205, 206].

We have defined χT as the target process matrix and here d = 4. We obtain open-system gate
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fidelities of F = 0.997, F = 0.9994 for the two cases of conservative and optimistic decoherence

rate estimates, respectively.
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8 Conclusion and outlook
The goal of this thesis has been to make progress on two related fronts. The first was to evaluate

and characterize the coherence of noise-protected qubits—specifically the current-mirror qubit—in

the hope that such a next-generation device can outperform and eventually supersede the trans-

mon. The second was to improve gate fidelities by going beyond standard treatments based on the

RWA, especially in the context of high-coherence and low-frequency fluxonium qubits. These goals

are mutually beneficial due to the detrimental effects of both imperfect control and decoherence on

gate fidelities. To break out of the NISQ era [17] and make meaningful strides towards achieving

quantum error correction, gate fidelities must increase beyond the current state-of-the-art.

The detailed analysis of Kitaev’s current mirror faced new challenges not common for previously

studied superconducting circuits: the significant increase in the number of degrees of freedom. As

a consequence, simulating the full Hamiltonian using exact diagonalization proved intractable for

N > 3 because of memory requirements. To overcome this obstacle, in Ch. 5 we presented an

effective Hamiltonian describing the low-energy subspace of the current-mirror circuit, halving the

number of degrees of freedom and, more importantly, reducing the range of interactions. This

effective Hamiltonian was derived by treating the Josephson tunneling perturbatively, resulting in

second-order exciton tunneling as well as N -th order degeneracy-breaking processes. We pro-

vided a systematic discussion of the degeneracy-breaking terms, crucial to predicting the behavior

of the current-mirror qubit. The effective Hamiltonian thus obtained is amenable to DMRG treat-

ment, and has allowed us to simulate circuits with up to N = 12 big capacitors. For the DMRG

numerics, computation time rather than memory poses the bottleneck, and therefore simulation of

even larger circuits is possible.

Our numerical DMRG results confirmed the development of (approximate) ground-state degen-
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eracy for circuit sizes exceeding N = 6, tracing the origin of the near-degeneracy to an effective

double-well structure with slight asymmetry in the N -dimensional configuration space of the ef-

fective model. We established a correspondence between the minima in the full model with the

minima in the effective model, indicating that even (odd) vortex parity minima contribute to the 0

(π) minimum. Linearization of the effective-model potential around both minima further yields a

good approximation for the circuit’s low-energy excitations in terms of harmonic normal modes.

An important insight from this analysis is the observed 1/N scaling of the energies of low-lying

excitations. As a consequence, excessively large circuit sizes N must be avoided as increasing

size will eventually lead to depolarization from thermal excitations of the harmonic modes.

Based on the spectral data from DMRG, we have estimated coherence times for the current-

mirror qubit for a representative set of parameters. 1/f charge noise, critical-current noise, flux

noise and dielectric loss were investigated for their contributions to both pure dephasing and depo-

larization. We find that charge noise is likely to limit Tϕ, while dielectric loss limits T1 in our analysis.

Tϕ is observed to improve as a function of N because of the decreasing degeneracy-breaking co-

efficient K, while T1 worsens as a function of N because of the energy suppression of low-lying

eigenstates, and resulting thermal excitations. Tϕ and T1 intersect near N = 11, indicating that

N = 11 may be considered an ideal operating point of the qubit for the studied parameter set.

Coherence times calculations were performed at the charge sweet spot, leaving open for now the

characterization in the presence of offset-charge jumps > 0.1e [207].

In Ch. 6 we generalized the well-known method of tight binding for the efficient and accurate

computation of the low-energy spectra of superconducting circuits. We demonstrated the method

on systems with many degrees of freedom, multiple inequivalent minima, and periodic potentials.

Construction of the Hamiltonian proceeds by using ansatz Bloch states formed by appropriate

linear combinations of localized wave functions. In terms of the Bloch states, the Schrödinger

equation turns into a generalized eigenvalue problem. Solving it yields a spectrum that provides

upper bounds to the true eigenenergies. To establish the accuracy of the tight-binding method we

applied it to the flux qubit and N = 3 current-mirror circuit and achieved excellent agreement with

exact results. Additionally, across multiple orders of magnitude in memory usage, eigenenergies
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computed using tight binding were found to be more accurate than those calculated using the

charge basis. This indicates that for a given limited amount of memory, tight binding states can

oftentimes more closely represent the true eigenstates of a circuit as compared to charge-basis

states.

To push into the regime of largeN , relevant for protected current-mirror circuits, we applied the

tight-binding method to the N = 5 current mirror. For this circuit with nine degrees of freedom, we

encounter memory issues before the spectrum converges when using the charge basis. Thus, in

the absence of exact results, we compare absolute values of the estimated eigenenergies, which

must be upper bounds to the true values. We found that the tight-binding method extracted lower

and thus more accurate eigenenergy estimates than those obtained using the charge basis, given

our computational resources.

In Ch. 7 we applied our framework for beyond-the-RWA gates to a system of galvanically-

coupled fluxonium qubits. The effective XX coupling can be switched on and off while maintaining

the qubits at their respective sweet spots. Motivated by record coherence times achieved with

heavy-fluxonium qubits, we have concentrated on operating at frequencies below ∼200 MHz [31,

33]. We proposed gates performed using strong flux modulation that invalidates the RWA, and in

particular makes it more natural operate in the lab frame. Using the theory developed in Ch. 4, we

presented a protocol that achieves a fast and high-fidelity
√
ϕSWAP gate. To transform this into

the more familiar
√
iSWAP gate, we introduced variable-time identity gates. These gates when

combined with Z rotations helped us to realize a
√
iSWAP gate with fidelity F > 0.999. Fidelities

are limited by incoherent errors as well as unwanted transitions in the computational subspace

mediated by higher-lying states.

We turn next to an outlook on what the author believes are possible interesting directions for

future research building on the results of this thesis. These include considering new and improved

types of circuits that could exhibit protection, investigating the relative importance of beyond-the-

RWA effects in superconducting circuits more broadly and exploring the scalability of the galvanic-

coupling architecture introduced for fluxonium qubits.

The circuits underlying the protected rhombus and 0 − π qubits have been experimentally re-
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alized [50, 51, 53]. Reaching the fully protected parameter regime is challenging in part due to

stringent parameter requirements, which are similarly present in the case of the current mirror.

There has been notable recent progress, for instance in the realization of a superinductance (re-

quired for the protected 0−π circuit [102]) in the context of the so-called “Blochnium” device [208].

However, generally speaking, we lack a systematic understanding of which superconducting cir-

cuits do or do not exhibit protection. Indeed there is a significant amount of unexplored space in

terms of novel circuit designs. It is possible that there exist other types of protected circuits whose

protected parameter regimes are easier to reach with current technologies.

Beyond ideas for new protected circuits, a relatively unexplored frontier is the high-fidelity ex-

ecution of protected gates on protected circuits. (Unprotected single-qubit gates on a 0 − π qubit

have been demonstrated in Ref. [53], however a fidelity was not quoted.) In his seminal paper

introducing the current mirror, Kitaev also considered protected gates effected using a quantum

switch together with a superinductance [52]. Later proposals from Brooks, Kitaev and Preskill

[102] as well as Douçot and Ioffe [47] are based on similar ideas and circuit elements. Recent

work based on a detailed analysis of the 0− π circuit has shown that such a gate scheme will not

work in practice [103], irrespective of the difficulties associated with building a quantum switch or

superinductance. A very exciting research direction is investigating new and qualitatively different

ideas for performing protected gates. This is a gaping hole in the literature that is waiting to be

filled.

We have argued in this thesis that effects from strong drives going beyond the RWA are crucial

for implementing high-fidelity gates in low-frequency qubits. In the context of two-qubit gates we

considered the parameter regime A/ω ≥ 0.1, where A is the amplitude of the drive and ω is

the frequency of the relevant transition. In this case neglecting counter-rotating terms can affect

fidelities at the level of 10−2 − 10−3, necessitating an analysis including these terms to achieve

high-fidelity gates. A broader question emerging from this research is the relative importance of

these effects on higher-frequency qubits: do such experiments probe parameter regimes where

the presence of counter-rotating terms limits gate fidelities? In a recent experiment, Mundada et al.

coupled two fixed-frequency transmon qubits (separated by 278 MHz) via a flux-tunable coupler
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that was modulated at the qubit difference frequency to perform an entangling gate [26]. The drive

strengths in this experiment were on the order of a few MHz, thus achieving A/ω ≥ 0.01. The

reported two-qubit gate infidelities were on the order of 10−2 [26]. Our preliminary investigations

suggest that for such parametrically-activated flux gates, fidelities are impacted at the level of

10−4 − 10−5 when A/ω ≥ 0.01. Thus, the experiment in Ref. [26] was not sensitive to the beyond-

the-RWA effects discussed here. Nevertheless, if drive strengths increase to achieve faster gates

or if infidelities approach the 10−4 level (consistent with the current state-of-the-art in two-qubit

transmon gates [22]), then counter-rotating effects may eventually become limiting and require

correction.

Utilizing the galvanic-coupling architecture introduced in Ch. 7 in a future quantum processor

will require scaling to arrays of multiple qubits and couplers. One attractive feature of our scheme

is the ability to turn the interaction between neighboring qubits off via the tunable coupler. This

should help alleviate spectator-qubit effects that can limit two-qubit gate fidelities [209]. It is rela-

tively straightforward to envision extending the device in a 1D array. Generalization to 2D arrays

with increased qubit connectivity will require additional modifications, and will be useful for steps

towards error-correcting surface codes [20].

We hope that the results presented in this thesis inspire the reader to explore the new and excit-

ing aspects of the world of superconducting quantum circuits. There are clearly many unexplored

frontiers, and we have only just scratched the surface of what these circuits have to offer.
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A Schrieffer-Wolff transformation
In this appendix we derive the Schrieffer-Wolff transformation [14, 133, 135, 136, 137] used ex-

tensively throughout this thesis. We follow closely the derivation presented by Bravyi, DiVincenzo

and Loss [137] which lends itself to a computer algebra implementation. We present associated

Mathematica ® code in Sec. A.2, along with a few selected examples.

A.1 Analytical Schrieffer-Wolff transformation

Consider the Hamiltonian H = H0 + ϵV , where we will treat ϵV as a small perturbation on H0. We

take the eigenstates |i⟩ and eigenenergies Ei of H0 as known, H0|i⟩ = Ei|i⟩. A powerful feature

of the Schrieffer-Wolff transformation is that it can handle (near) degeneracies. At the outset, we

specify the (near-)degenerate subspace(s) spanned by sets of eigenstates from H0. Once this is

done, all energy denominators are energy differences between states in different subspaces and

thus cannot approach zero (provided that the perturbative treatment itself is valid).

We consider a degenerate subspace defined by a projector P (typically the “low-energy” sub-

space) along with the complementary subspace defined by the projector Q = 1 − P (the “high-

energy” subspace). The purpose of the Schrieffer-Wolff transformation is to perturbatively decou-

ple these subspaces to obtain a description of the physics entirely within the low-energy subspace.

We introduce a unitary transformation e−S that block diagonalizes the Hamiltonian H, specified by

an anti-hermitian and block off diagonal generator S [133, 136]. The effective Hamiltonian in the

low-energy subspace is then

Heff = PeS(H0 + ϵV )e−SP. (A.1)
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Before proceeding, we introduce the notation Ŷ (X) = [Y,X] describing the adjoint action of the

operator Y on X. This notation allows for a compact expression of the unitary transformation

exp(Ŝ)(H0 + ϵV ) = exp(S)(H0 + ϵV ) exp(−S). (A.2)

This equality is based on the Baker-Campbell-Hausdorff expansion [14, 127, 128, 129, 130]

exp(S)H exp(−S) =
∞∑
n=0

1

n!
(Ŝ)n(H). (A.3)

Splitting the right-hand side of Eq. (A.2) into block-diagonal and block-off-diagonal components,

we obtain

exp(Ŝ)(H0 + ϵV ) = cosh(Ŝ)(H0 + ϵVd) + sinh(Ŝ)(ϵVod) (A.4)

+ cosh(Ŝ)(ϵVod) + sinh(Ŝ)(H0 + ϵVd), (A.5)

where Vd = PV P + QV Q and Vod = PV Q + QV P . Because the generator is block off diagonal,

the second line of Eq. (A.4) must be zero

cosh(Ŝ)(ϵVod) + sinh(Ŝ)(H0 + ϵVd) = 0. (A.6)

Multiplying from the left by Ŝ/ sinh(Ŝ) (which is defined by its Taylor expansion and well behaved

for small S) we find

Ŝ coth(Ŝ)(ϵVod) + Ŝ(H0 + ϵVd) = 0. (A.7)

To help solve this equation for S we introduce the superoperator

L(X) =
∑
ij

⟨i|O(X)|j⟩
Ei − Ej

|i⟩⟨j|, (A.8)
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where O(X) = PXQ+QXP . Applying this superoperator to Eq. (A.7) yields

S = LŜ(ϵVd) + LŜ coth(Ŝ)(ϵVod), (A.9)

noting that LŜ(H0) = L([S,H0]) = −O(S) = −S. Expanding the generator as S =
∑∞

n=1 ϵ
nSn

(S0 = 0 because H0 is already diagonal) yields

∞∑
n=1

ϵnSn = L
∞∑
n=1

ϵnŜn(ϵVd) + L
∞∑
n=0

a2n

 ∞∑
m=1

ϵmŜm

2n

(ϵVod), (A.10)

where we have utilized the Taylor expansion

Ŝ coth(Ŝ)(ϵVod) =
∞∑
n=0

a2n(Ŝ)
2n(ϵVod). (A.11)

The expansion coefficients are an = 2nBn/n! where the Bn are the Bernoulli numbers. We now

proceed by equating the coefficients of terms at each order in ϵ in Eq. (A.10). This yields a recursive

definition for the Sn. The first two terms are

S1 = L(Vod), (A.12)

S2 = LŜ1(Vd), (A.13)

while the higher-order generators are

Sn = LŜn−1(Vd) +
∑
j≥1

a2jLŜ2j(Vod)n−1, n ≥ 3. (A.14)

We have defined

Ŝk(Vod)m =
∑

n1,...nk≥1,
n1+...+nk=m

Ŝn1 · · · Ŝnk
(Vod). (A.15)

With the generator in hand we now return to the calculation of the effective Hamiltonian. We
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find

exp(Ŝ)(H0 + ϵV ) = cosh(Ŝ)(H0 + ϵVd) + sinh(Ŝ)(ϵVod) (A.16)

= H0 + ϵVd + [cosh(Ŝ)− 1](H0 + ϵVd) + sinh(Ŝ)(ϵVod)

= H0 + ϵVd +
cosh(Ŝ)− 1

tanh(Ŝ)
tanh(Ŝ)(H0 + ϵVd) + sinh(Ŝ)(ϵVod)

= H0 + ϵVd +

[
−cosh(Ŝ)− 1

tanh Ŝ
+ sinh(Ŝ)

]
(ϵVod)

= H0 + ϵVd + tanh(Ŝ/2)(ϵVod).

In the second-to-last equality we have made use of Eq. (A.6) and in the last equality we utilized a

standard trigonometric identity. With the Taylor expansion tanh(Ŝ/2) =
∑∞

n=1 b2n−1(Ŝ)
2n−1, where

b2n−1 = 2(22n − 1)B2n/(2n)! we obtain

Heff = PH0P + PϵVdP +
∞∑
n=2

ϵnHeff,n, (A.17)

Heff,n =
∑
j≥1

b2j−1PŜ
2j−1(Vod)n−1P. (A.18)

We have denoted the effective Hamiltonian at nth order byHeff,n. As an example, the second-order

effective Hamiltonian is

Heff,2 =
1

2
P
[
L(Vod)Vod − VodL(Vod)

]
P, (A.19)

reproducing the known results [14, 136].

A.2 Computer-algebra implementation

We implement the Schrieffer-Wolff transformation programmatically in Mathematica ® using the

SNEG [210] package. We have made the code publicly available on GitHub [211] and additionally

describe it below for completeness. We have found this code useful mainly as a means for verifying
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analytically derived results. We are certain that the reader can envision more inventive uses of the

software.

Import SNEG
<< sneg`sneg`;

Define the superoperator functions
MatrixElementOverListsProj[Op_, PList_, QList_] :=
Module[{PProj, QProj, bl},
If[Not[PossibleZeroQ[Op]],

PProj = PList /. {ket_ -> nc[ket, conj[ket]]};
QProj = QList /. {ket_ -> nc[ket, conj[ket]]};
bl = Map[nc[#, QProj] &, Op];
Return[Total[Outer[nc[#1, #2] &, PProj, bl], 2]],
Return[0]
];

]
OffDiagSuperOp[Op_, PList_, QList_] := Module[{},

Return[MatrixElementOverListsProj[Op, PList, QList]
+ MatrixElementOverListsProj[Op, QList, PList]]

]
DiagSuperOp[Op_, PList_, QList_] := Module[{},

Return[MatrixElementOverListsProj[Op, PList, PList]
+ MatrixElementOverListsProj[Op, QList, QList]]

]
LSuperOperator[Op_, H0_, PList_, QList_] :=
Module[{PProjList , QProjList , PLength, QLength,

result, Eni, Enj, OffDiagOp , Pidx, Qidx},
PProjList = PList /. {ket_ -> nc[ket, conj[ket]]};
QProjList = QList /. {ket_ -> nc[ket, conj[ket]]};
PLength = Length[PList];
QLength = Length[QList];
result = 0;
OffDiagOp = OffDiagSuperOp[Op, PList, QList];
For[Pidx = 1, Pidx <= PLength, Pidx++,
For[Qidx = 1, Qidx <= QLength, Qidx++,

Eni = nc[conj[PList[[Pidx]]], H0, PList[[Pidx]]];
Enj = nc[conj[QList[[Qidx]]], H0, QList[[Qidx]]];
result += Map[nc[PProjList[[Pidx]], #, QProjList[[Qidx]]]

/(Eni - Enj) &, OffDiagOp];
result += Map[nc[QProjList[[Qidx]], #, PProjList[[Pidx]]]

/(Enj - Eni) &, OffDiagOp];
];

];
Return[result]
]

Below we define functions that assist in performing the sum in Eq. (A.15), in particular utilizing the
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algorithm presented in Ref. [158] for generating all possible vectors of length k with non-negative

entries that sum to m. The entries in each vector returned, e.g., by GenerateNextPartition specify

the perturbative order of the generator at each position in a product of generators. For instance,

the vector [1, 1, 2] corresponds to the product S1S1S2.
GenerateNextPartition[PrevVec_] :=
Module[{NN, VecLength , NextVec, idx, updateidx},
NN = Total[PrevVec];
VecLength = Length[PrevVec];
updateidx = 0;
For[idx = VecLength - 1, idx >= 1, idx = idx - 1,
If[PrevVec[[idx]] != 0,

updateidx = idx;
Break[];
];

];
NextVec = Table[0, VecLength];
NextVec[[1 ;; updateidx - 1]] = PrevVec[[1 ;; updateidx - 1]];
NextVec[[updateidx]] = PrevVec[[updateidx]] - 1;
NextVec[[updateidx + 1]] = NN - Total[NextVec[[1 ;; updateidx]]];
Return[NextVec]
]

GenerateAllPartitions[k_, m_] :=
Module[{InitialVec , AllPartitions , PrevVec, NextVec},
InitialVec = Table[0, k];
InitialVec[[1]] = m;
AllPartitions = {InitialVec};
PrevVec = InitialVec;
While[PrevVec[[k]] != m,
NextVec = GenerateNextPartition[PrevVec];
AllPartitions = Append[AllPartitions , NextVec];
PrevVec = NextVec;
];

Return[AllPartitions]
]

GeneratorSum[H0_, VOp_, Seed_, k_, m_, PList_, QList_] :=
Module[{AllPartitions , NumPartitions , GenList, NestedCommResult ,

result, genidx, partidx, CurrentPartition , Sgenidx},
AllPartitions = GenerateAllPartitions[k, m];
NumPartitions = Length[AllPartitions];
result = 0;
For[partidx = 1, partidx <= NumPartitions , partidx++,
GenList = {};
CurrentPartition = AllPartitions[[partidx]];
(* vectors with any entries that are zero do not contribute *)
If[Not[AnyTrue[CurrentPartition , PossibleZeroQ]],
For[genidx = 1, genidx <= k, genidx++,
Sgenidx = ComputeGenerator[CurrentPartition[[genidx]],

H0, VOp, PList, QList];
GenList = Append[GenList, Sgenidx]
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];
NestedCommResult = Seed;
For[genidx = k, genidx >= 1, genidx = genidx - 1,
NestedCommResult =

commutator[GenList[[genidx]], NestedCommResult];
];

result += NestedCommResult;
];

];
Return[result]
]

We define the relevant Taylor coefficients
amCoeff[m_] := (2^m BernoulliB[m])/m!
b2nminus1Coeff[n_] := (2*(2^(2*n) - 1) BernoulliB[2*n])/(2*n)!

Putting everything together, we define the recursive functions for computing the generator and

effective Hamiltonian at each order
ComputeGenerator[n_, H0_, V_, PList_, QList_] :=
Module[{S1, S2, Snm1, Sn, Vd, Vod, j, GenSum},
If[n == 0,

Return[0],
If[n == 1,

Return[LSuperOperator[V, H0, PList, QList]],
If[n == 2,

S1 = ComputeGenerator[1, H0, V, PList, QList];
Vd = DiagSuperOp[V, PList, QList];
S2 = -LSuperOperator[commutator[Vd, S1], H0, PList, QList];
Return[S2],
(* n>=3 *)
Vd = DiagSuperOp[V, PList, QList];
Vod = OffDiagSuperOp[V, PList, QList];
Snm1 = ComputeGenerator[n - 1, H0, V, PList, QList];
Sn = -LSuperOperator[commutator[Vd, Snm1], H0, PList, QList];
For[j = 1, 2*j <= n - 1, j++,
GenSum = GeneratorSum[H0, V, Vod, 2*j, n - 1, PList, QList];
Sn += amCoeff[2*j]*LSuperOperator[GenSum, H0, PList, QList];
];

Return[Sn]
];

];
];

]
ComputeEffectiveHamiltonian[n_, H0_, VOp_, PList_, QList_] :=
Module[{result, OffDVOp, gensum, j},
If[n == 0,

Return[MatrixElementOverListsProj[H0, PList, PList]],
If[n == 1,

Return[MatrixElementOverListsProj[VOp, PList, PList]],
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result = 0;
OffDVOp = OffDiagSuperOp[VOp, PList, QList];
For[j = 1, 2*j <= n, j++,
gensum =
GeneratorSum[H0, VOp, OffDVOp, 2*j - 1, n - 1, PList, QList];

result +=
b2nminus1Coeff[j]*
MatrixElementOverListsProj[gensum, PList, PList];

];
Return[result]
];

];
]

A.2.1 Example: transmon coupled to a resonator

The Hamiltonian of the coupled system of a transmon and a resonator is H = H0 + V where [38]

H0 =
∑
j

Eqj |j⟩⟨j|+ Er a†a, V =
∑
j

gj,j+1|j⟩⟨j + 1|a† + H.c. (A.20)

We have defined the energy of the jth excitation of the transmonEqj , the energy of the resonator

Er and the coupling coefficients gi,j . We utilize slightly nonstandard notation here for ease of

comparison with the software implementation. This Hamiltonian is implemented in Mathematica ®

code as
Pij[i_, j_] := nc[ket[i, j], bra[i, j]]
dimtmon = 4;
dimres = 4;
Evalsq = Flatten[Table[Subscript[Eq, i], {i, 0, dimtmon - 1}]];
gijs = Flatten[

Table[ToExpression[StringJoin["g", ToString[i], ToString[j]]],
{i, 0, dimtmon - 1}, {j, 0, dimtmon - 1}]];

Do[snegrealconstants[Evalsq[[i]]], {i, 1, Length[Evalsq]}]
snegrealconstants[Er]
Do[snegrealconstants[gijs[[i]]], {i, 1, Length[gijs]}]
H0 = Sum[(Evalsq[[i + 1]] + j Er)*Pij[i, j],
{i, 0, dimtmon - 1}, {j, 0, dimres - 1}];
aop = Sum[Sqrt[nocc + 1] nc[ket[Null, nocc],
bra[Null, nocc + 1]], {nocc, 0, dimres - 2}];
tmonplus = Sum[ToExpression[StringJoin["g", ToString[i + 1], ToString[i]]]*

nc[ket[i + 1, Null], bra[i, Null]], {i, 0, dimtmon - 2}];
Vop = nc[tmonplus , aop] + conj[nc[tmonplus , aop]];
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To carry out the Schreiffer-Wolff transformation we define the low- and high-energy subspaces. In

this case, it is appropriate to treat each state as its own subspace. As an example we consider

the case where the low-energy subspace is defined by the state |j, n⟩ = |1, 2⟩, where j is the

number of transmon excitations and n is the number of resonator excitations. The “high-energy”

subspace is then spanned by all the other states (of course, some states in this subspace are lower

in energy than the state |1, 2⟩: this presents no issue, as the only requirement for carrying out the

transformation is that there be a sufficiently large energy gap). The following code computes the

second-order effective Hamiltonian in the low-energy subspace
In[1]:= PList = {ket[1, 2]};

QSum = Sum[ket[i, nocc], {i, 0, dimtmon}, {nocc, 0, dimres}] -
PList[[1]];

QList = List @@ QSum;
EffHam2 = ComputeEffectiveHamiltonian[2, H0, Vop, PList, QList];
Collect[EffHam2, {g10^2, g21^2}]

Out[1]=
(
− 3g102

Er+Eq0−Eq1
+ 2g212

Er+Eq1−Eq2

)
|1×2⟩·⟨1×2|,

where, e.g., |1×2⟩ is the SNEG notation for |1, 2⟩. This result agrees with those known in the liter-

ature [14, 38, 190]. The fourth-order effective Hamiltonian is likewise straightforward to compute

(the third-order term vanishes)
In[2]:= EffHam4 = ComputeEffectiveHamiltonian[4, H0, Vop, PList, QList];

Simplify[Collect[EffHam4, { g21^2 g32^2, g10^4, g21^4, g10^2 g21^2}]]

Out[2]= |1×2⟩·⟨1×2|

 9g104

(Er+Eq0−Eq1)3
+

6g102g212(Eq0−2Eq1+Eq2)
(Er+Eq0−Eq1)2(Er+Eq1−Eq2)2

+
2g212

(
−2g212+ g322(Er+Eq1−Eq2)

2Er+Eq1−Eq3

)
(Er+Eq1−Eq2)3

.

Finally, to demonstrate the power of the symbolic method, we compute the sixth-order effective

Hamiltonian term
In[3]:= EffHam6 = ComputeEffectiveHamiltonian[6, H0, Vop, PList, QList];

Simplify[
Collect[
EffHam6, { g21^3 g32^3, g21^2 g32^2 g10^2, g10^6, g21^6,
g10^2 g21^4, g32^2 g21^4, g10^4 g21^2}]]

Out[3]= 2|1×2⟩·⟨1×2|

(
− 27g106

(Er+Eq0−Eq1)5
+

9g104g212(2Er2+Eq20+6Eq21+4Er(Eq1−Eq2)−8Eq1Eq2+3Eq22+Eq0(−4Eq1+2Eq2))
(Er+Eq0−Eq1)4(Er+Eq1−Eq2)3

+

3g102g212
(Er+Eq0−Eq1)3(Er+Eq1−Eq2)4

(
− 6g212(Er+ Eq0 − Eq1)2 + 4g212(Er+ Eq0 − Eq1)(Er+ Eq1 −

Eq2)− 2g212(Er+ Eq1 − Eq2)2 +
g322(Er+Eq0−Eq1)

2(Er+Eq1−Eq2)
2

(2Er+Eq1−Eq3)2
+
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2g322(Er+Eq0−Eq1)
2(Er+Eq1−Eq2)

2Er+Eq1−Eq3
− g322(Er+Eq0−Eq1)(Er+Eq1−Eq2)

2

2Er+Eq1−Eq3

)
+ −2g214g322+g212g324

(Er+Eq1−Eq2)3(2Er+Eq1−Eq3)2
+

−6g214g322(Er+Eq1−Eq2)+8g216(2Er+Eq1−Eq3)
(Er+Eq1−Eq2)5(2Er+Eq1−Eq3)

)
.

A.2.2 Example: two qubits coupled to a resonator

We now apply the Schrieffer-Wolff transformation to the example of two qubits that are each individ-

ually coupled to a resonator, but not directly coupled to each other. The Hamiltonian isH = H0+V ,

where

H0 = −Eqa
2
σaz −

Eqb
2
σbz + Era†a, V = gqa σ

a
+a+ gqb σ

b
+a+ H.c. (A.21)

We implement this Hamiltonian in Mathematica ® code as
Pij[i_, j_, k_] := nc[ket[i, j, k], bra[i, j, k]]
dimres = 5;
snegrealconstants[Eqa, Eqb, Er, gqa, gqb];
H0 = Sum[(-Eqa/2 (-1)^i + -Eqb/2 (-1)^j + k Er) Pij[i, j, k], {i, 0,

1}, {j, 0, 1}, {k, 0, dimres - 1}];
aop = Sum[

Sqrt[nocc + 1]
nc[ket[Null, Null, nocc], bra[Null, Null, nocc + 1]], {nocc, 0,

dimres - 2}];
q1plus = gqa Sum[nc[ket[1, j, Null], bra[0, j, Null]], {j, 0, 1}];
q2plus = gqb Sum[nc[ket[i, 1, Null], bra[i, 0, Null]], {i, 0, 1}];
Vop = nc[q1plus, aop] + nc[q2plus, aop] +

conj[nc[q1plus, aop] + nc[q2plus, aop]];

We consider the case where the qubits are near resonant, such that the states |0, 1, n⟩, |1, 0, n⟩ are

approximately degenerate. The indices correspond to the number of excitations in qubit a, qubit b,

and the resonator. As such the low-energy subspace now contains multiple states
PList = {ket[0, 1, 2], ket[1, 0, 2]};
QSum = Sum[ket[i, j, k], {i, 0, 1}, {j, 0, 1}, {k, 0, dimres - 1}] -

Total[PList];
QList = List @@ QSum;

The second-order effective Hamiltonian is
In[4]:= EffHam2 = FullSimplify[ComputeEffectiveHamiltonian[2, H0, Vop, PList, QList]]
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Out[4]=
(

−2gqa2
Eqa−Er +

3gqb2
Eqb−Er

)
|0×1×2⟩·⟨0×1×2|+ Eqa+Eqb−2Er

2(Eqa−Er)(Eqb−Er)gqa gqb(|0×1×2⟩·⟨1×0×2|+

|1×0×2⟩·⟨0×1×2|) +
(

3gqa2
Eqa−Er +

−2gqb2
Eqb−Er

)
|1×0×2⟩·⟨1×0×2|

This reproduces the known result [15, 212].
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B Analytical inverse of the current-

mirror capacitance matrix
This chapter is based on material published in D. K. Weiss et al., Phys. Rev. B 100, 224507 (2019)

(Editor’s Suggestion).

To obtain analytical expressions for the inverse capacitance matrix of the current-mirror circuit,

we first write the capacitance matrix in the ± coordinates, ordered by exciton variables followed by

agiton variables. In these coordinates and with this ordering, the capacitance matrix C [Eq. (5.2)]

is block diagonal

C̃ =

C− 0

0 C+

 , (B.1)

where

C± =
CJ

2

x± −1 ∓1

−1

−1

∓1 −1 x±



, (B.2)

defining x± = C±/CJ , C+ = Cg+2CJ and C− = Cg+2CJ +2CB. The matrices C± are symmetric,

tridiagonal and Toeplitz. The matrix C+ is cyclic tridiagonal, and is readily inverted [213], while the

anomalous corner elements in C− require additional work [214]. One finds

(C−1
± )j,k =

∓Uk−j−1(x±/2)− UN−k+j−1(x±/2)

CJ [1− TN (x±/2)]
, (B.3)
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where Tn, Un denote the Chebyshev polynomials of the first and second kind.

Based on these results, we determine asymptotic expressions for the charging-energy matrix

elements (
E±
C

)
j,k

=
e2

2
(C−1

± )j,k, (B.4)

associated with the agiton and exciton charges n±j . In the parameter regime of interest, capaci-

tances follow the hierarchy CB ≫ CJ > Cg. Consequently, matrix elements of E+
C ∼ 1/Cg, 1/CJ

tend to be large compared to relevant elements of E−
C ∼ 1/CB. Agiton charging energies are long-

ranged, with maximum entries along the diagonal and monotonically decreasing towards minimum

entries along the N/2-th off-diagonal. Asymptotic expressions for the diagonal, and the first and

N/2-th off-diagonal are given by:

E+
C0 ≡

(
E+
C

)
j,j

=
e2

NCg

[
1 +

Cg(N
2 − 1)

12CJ
+O

({
Cg

CJ

}2
)]

, (B.5)

E+
C1 ≡

(
E+
C

)
j,j±1

=
e2

NCg

[
1 +

Cg(N
2 − 6N + 5)

12CJ
+O

({
Cg

CJ

}2
)]

, (B.6)

and

E+
C N

2

≡ (E+
C )j,j±N

2
=

e2

NCg

[
1− Cg

24CJ

(
N2 + 2

)
+O

({
Cg

CJ

}2
)]

. (B.7)

For excitons, charging energies are much shorter-ranged with off-diagonal elements decreasing

rapidly in powers of CJ/CB. The primarily relevant entries of E−
C are along the diagonal and first

off-diagonal,

E−
C0 ≡

(
E−
C

)
j,j

=
e2

2CB
+O

(
CJ
CB
,
Cg

CB

)
, (B.8)

E−
C1 ≡

(
E−
C

)
j,j±1

=
e2CJ

4C2
B

+O
(

CJ
CB
,
Cg

CB

)
, (B.9)

and anomalous corner elements
(
E−
C

)
1,N

= −E−
C1. These results help us understand the structure

of the effective Hamiltonian and allow us to write down analytical expressions for the energies of
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virtual intermediate states.
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C Open-system gate fidelity
In this appendix we provide a derivation of Eq. (7.65), for the gate fidelity of a noisy quantum

operation:

F =
dTr(χχT ) + Tr(χ)

d+ 1
. (C.1)

This equation is written in terms of the ideal and realized (either experimentally or numerically)

process matrices, χT and χ, respectively. The formula (7.65) is often quoted in this form in the

literature [101, 174, 215], while derivations are often written instead in terms of a general quantum

channel (completely positive, trace-preserving map) [205, 206] or a sum over Kraus operators

[195]. Here, we provide an explicit link between Eq. (7.65) and the results of Refs. [195, 205, 206].

We take as our starting point Eq.(5) of Ref. [195], which gives the gate fidelity for a quantum

channel G achieving the ideal unitary operation U0

F =
1

d(d+ 1)

{
Tr

(∑
k

M †
kM

)
+
∑
k

|Tr(Mk)|2
}
. (C.2)

Here, the quantum channel G(ρ) has been written in terms of a sum over Kraus operators G(ρ) =∑
kGkρG

†
k [204] and the definition Mk = U †

0Gk has been introduced. Note that the dimension of

the relevant subspace is denoted as d instead of n as in Ref. [195] to connect to Eq. (7.65).

To obtain a fidelity formula that does not explicitly depend on the process-dependent Kraus

operators Gk, we expand in a fixed basis of operators Gk =
∑

m ekmG̃m [204]. The G̃m are typi-

cally taken to be (tensor products of) Pauli operators [198]. Inserting this expansion of the Kraus
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operators into Eq. (C.1) we obtain

F =
1

d(d+ 1)

{
Tr

(∑
k

∑
m,n

e∗knekmG̃
†
nG̃m

)
+
∑
k

∣∣∣∣∣∣Tr
(
U †
0

∑
m

ekmG̃m

)∣∣∣∣∣∣
2}
. (C.3)

For the first term on the right-hand side, we obtain

Tr

(∑
m,n

G̃†
nG̃m

∑
k

e∗knekm

)
= Tr

(
1
∑
n

χnn

)
= d

∑
n

χnn = dTr(χ). (C.4)

We have defined the process matrix χmn =
∑

k ekme
∗
kn [204] and the sum on m yields a delta

function δm,n because the G̃k form a basis. Additionally, 1 is the d × d identity matrix. For the

second term in Eq. (C.3) we obtain

∑
k

∣∣∣∣∣∣Tr
(
U †
0

∑
m

ekmG̃m

)∣∣∣∣∣∣
2

=
∑
k

Tr

∑
m

∑
j

e∗kmG̃
†
mujG̃j

Tr

∑
ℓ

∑
i

u∗i G̃
†
iekℓG̃ℓ

 (C.5)

= d2
∑
k

∑
i,j

e∗kjuju
∗
i eki

= d2
∑
i,j

χij(χT )ji

= d2 Tr(χχT ),

where we have decomposed the ideal unitary as U0 =
∑

j ujG̃j and defined the matrix elements

of the target process matrix (χT )ij = uiu
∗
j . Altogether we find

F =
dTr(χχT ) + Tr(χ)

d+ 1
, (C.6)

which is Eq. (7.65).
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